• Journal of Semiconductors
  • Vol. 45, Issue 9, 091101 (2024)
Bo Cao1,2, Ye Tian1,2,*, Huan Fei Wen1,2,**, Hao Guo1,2..., Xiaoyu Wu3,***, Liangjie Li1,2, Zhenrong Zhang1,2, Lai Liu1,2, Qiang Zhu1,2, Jun Tang1,2,**** and Jun Liu1,2,*****|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Dynamic Measurement Technology, School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
  • 2Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
  • 3School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.1088/1674-4926/24040041 Cite this Article
    Bo Cao, Ye Tian, Huan Fei Wen, Hao Guo, Xiaoyu Wu, Liangjie Li, Zhenrong Zhang, Lai Liu, Qiang Zhu, Jun Tang, Jun Liu. Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures[J]. Journal of Semiconductors, 2024, 45(9): 091101 Copy Citation Text show less
    References

    [1] R K Cavin, P Lugli, V V Zhirnov. Science and engineering beyond Moore’s law. Proc IEEE, 100, 1720(2012).

    [2] W Haensch, E J Nowak, R H Dennard et al. Silicon CMOS devices beyond scaling. IBM J Res Dev, 50, 339(2006).

    [3] Y Ye, Y Dai, L Dai et al. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. ACS Appl Mater Interfaces, 2, 3406(2010).

    [4] C C Jia, Z Y Lin, Y Huang et al. Nanowire electronics: From nanoscale to macroscale. Chem Rev, 119, 9074(2019).

    [5] R X Yan, D Gargas, P D Yang. Nanowire photonics. Nature Photon, 3, 569(2009).

    [6] L N Quan, J Kang, C Z Ning et al. Nanowires for photonics. Chem Rev, 119, 9153(2019).

    [7] C H Chen, S J Chang, S P Chang et al. Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction. Chem Phys Lett, 476, 69(2009).

    [8] Z Y Yang, T Albrow-Owen, H Cui et al. Single-nanowire spectrometers. Science, 365, 1017(2019).

    [9] M Zhang, M Wille, R Röder et al. Amphoteric nature of Sn in CdS nanowires. Nano Lett, 14, 518(2014).

    [10] del Águila A Granados, B Jha, F Pietra et al. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals. ACS Nano, 8, 5921(2014).

    [11] R Scott, A V Prudnikau, A Antanovich et al. A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale, 11, 3958(2019).

    [12] A W Achtstein, A Schliwa, A Prudnikau et al. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett, 12, 3151(2012).

    [13] M Achermann, A P Bartko, J A Hollingsworth et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat Phys, 2, 557(2006).

    [14] V I Klimov. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B, 104, 6112(2000).

    [15] X Q Hou, J Kang, H Y Qin et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat Commun, 10, 1750(2019).

    [16] Y Wang, H D Sun. Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Prog Quant Electron, 60, 1(2018).

    [17] J Jang, G Song, K Kyhm et al. Optical gain of inelastic exciton-exciton scattering in CdS nanowires. Appl Phys Lett, 114, 1101(2019).

    [18] Z Zhang, Y L Wang, S Y Yin et al. Exciton-polariton light-emitting diode based on a ZnO microwire. Opt Express, 25, 17375(2017).

    [19] J Y Chen, T M Wong, C W Chang et al. Self-polarized spin-nanolasers. Nature Nanotech, 9, 845(2014).

    [20] Z Zhao, M Y Zhong, W C Zhou et al. Simultaneous triplet exciton–phonon and exciton–photon photoluminescence in the individual weak confinement CsPbBr3 micro/nanowires. J Phys Chem C, 123, 25349(2019).

    [21] T Takagahara. Electron−phonon interactions in semiconductor nanocrystals. J Lumin, 70, 129(1996).

    [22] Q Zheng, W C Zhou, Y H Peng et al. Surface polarons and optical micro-cavity modulated broad range multi-mode emission of Te-doped CdS nanowires. Nanotechnology, 29, 465709(2018).

    [23] Y Y Lai, Y P Lan, T C Lu. Strong light–matter interaction in ZnO microcavities. Light Sci Appl, 2, e76(2013).

    [24] T Tawara, H Yoshida, T Yogo et al. Microcavities with distributed Bragg reflectors based on ZnSe/MgS superlattice grown by MOVPE. J Cryst Growth, 221, 699(2000).

    [25] J Claudon, J Bleuse, N S Malik et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 4, 174(2010).

    [26] K F Mak, J Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photon, 10, 216(2016).

    [27] K J Fang, M H Matheny, X S Luan et al. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat Photonics, 10, 489(2016).

    [28] I Tochitsky, J Trautman, N Gallerani et al. Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci Rep, 7, 45487(2017).

    [29] Vugt L K van, S Rühle, P Ravindran et al. Exciton polaritons confined in a ZnO nanowire cavity. Phys Rev Lett, 97, 147401(2006).

    [30] R M Stevenson, C L Salter, J Nilsson et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys Rev Lett, 108, 040503(2012).

    [31] Y Tian, H Peng, S Yao et al. Repeatedly and superbroad savelength tuning microcavity in a single Sn-doped CdS microcone. J Phys Chem C, 126, 12696(2022).

    [32] L Zhang, Y Zhang, Y Guo et al. Growth of CdS nanotubes and their strong optical microcavity effects. Nanoscale, 11, 5325(2019).

    [33] G L Song, S Guo, X X Wang et al. Temperature dependent Raman and photoluminescence of an individual Sn-doped CdS branched nanostructure. New J Phys, 17, 063024(2015).

    [34] Q L Zhang, X L Zhu, Y Y Li et al. Nanolaser arrays based on individual waved CdS nanoribbons. Laser Photonics Rev, 10, 458(2016).

    [35] G Z Dai, Q Wan, C J Zhou et al. Sn-catalyst growth and optical waveguide of ultralong CdS nanowires. Chem Phys Lett, 497, 85(2010).

    [36] B B Dai, C Fan, X Xu et al. Growing a CdS flag from a wire with in situ control of the catalyst. CrystEngComm, 23, 3664(2021).

    [37] G Z Dai, B S Zou, Z L Wang. Preparation and periodic emission of superlattice CdS/CdS: SnS2 microwires. J Am Chem Soc, 132, 12174(2010).

    [38] G Z Dai, R B Liu, Q Wan et al. Color-tunable periodic spatial emission of alloyed CdS1-xSex/Sn: CdS1-xSex superlattice microwires. Opt Mater Express, 1, 1185(2011).

    [39] S Y Zou, W C Zhou, R B Liu et al. Cavity-enhanced microphotoluminescence in a core–shell n–p CdS/CdO micrometer wire and Its efficient surface photovoltage responses in the whole visible range. J Phys Chem C, 121, 14349(2017).

    [40] R B Liu, Z A Li, C H Zhang et al. Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties. Nano Lett, 13, 2997(2013).

    [41] C A Arguello, D L Rousseau, S P S Porto. First-order Raman effect in wurtzite-type crystals. Phys Rev, 181, 1351(1969).

    [42] A J Smith, P E Meek, W Y Liang. Raman scattering studies of SnS2 and SnSe2. J Phys C Solid State Phys, 10, 1321(1977).

    [43] W C Zhou, R B Liu, Q Wan et al. Bound exciton and optical properties of SnO2 one-dimensional nanostructures. J Phys Chem C, 113, 1719(2009).

    [44] L Abello, B Bochu, A Gaskov et al. Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy. J Solid State Chem, 135, 78(1998).

    [45] Y H Peng, Y Luo, W C Zhou et al. Photoluminescence and boosting electron-phonon coupling in CdS nanowires with variable Sn(IV) dopant concentration. Nanoscale Res Lett, 16, 19(2021).

    [46] J F Scott, T C Damen, W T Silfvast et al. Resonant Raman scattering in ZnS and ZnSe with the cadmium laser. Opt Commun, 1, 397(1970).

    [47] A L Pan, R B Liu, B S Zou. Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature. Appl Phys Lett, 88, 3102(2006).

    [48] J Y Xu, X J Zhuang, P F Guo et al. Dilute tin-doped CdS nanowires for low-loss optical waveguiding. J Mater Chem C, 1, 4391(2013).

    [49] S Guo, L Wang, C J Ding et al. Tunable optical loss and multi-band photodetection based on tin doped CdS nanowire. J Alloys Compd, 835, 155330(2020).

    [50] J Aguilar-Hern ndez, G Contreras-Puente, A Morales-Acevedo et al. Photoluminescence and structural properties of cadmium sulphide thin films grown by different techniques. Semicond Sci Technol, 18, 111(2003).

    [51] Y P Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149(1967).

    [52] L Zhang, R B Liu, B S Zou. Sn-doped CdS nanowires with low-temperature lasing by CW-laser excitation. ACS Appl Electron Mater, 2, 282(2020).

    [53] B Liu, R Chen, X L Xu et al. Exciton-related photoluminescence and lasing in CdS nanobelts. J Phys Chem C, 115, 12826(2011).

    [54] M Notomi, E Kuramochi, T Tanabe. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon, 2, 741(2008).

    [55] G Y Gou, G Z Dai, C Qian et al. High-performance ultraviolet photodetectors based on CdS/CdS: SnS2 superlattice nanowires. Nanoscale, 8, 14580(2016).

    [56] Y Tian, Y Y Zhang, H Peng et al. Revealing the quantum-confined free exciton A anisotropic emission in a CdS/CdS: SnS2 superlattice nanocone via angle-resolved photoluminescence spectroscopy. J Phys Chem C, 126, 1064(2022).

    [57] Y Tian, S F Yao, W C Lin et al. Effect of quantum confinement on polarization anisotropy emission in Sn-doped CdS microcones. Mater Adv, 3, 8407(2022).

    [58] A V Maslov, C Z Ning. Radius-dependent polarization anisotropy in semiconductor nanowires. Phys Rev B, 72, 161310(2005).

    [59] S Guo, R B Liu, C H Niu et al. Tin nanoparticles–enhanced optical transportation in branched CdS nanowire waveguides. Adv Opt Mater, 6, 1800305(2018).

    [60] W C Zhou, D S Tang, R B Liu et al. Structure and optical properties of pure and doped ZnO 1D nanostructures. Mate Lett, 91, 369(2013).

    [61] S Guo, F Y Zhao, Y Li et al. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers. Appl Phys Lett, 109, 162101(2016).

    [62] R B Liu, Y J Chen, F F Wang et al. Stimulated emission from trapped excitons in SnO2 nanowires. Physica E Low Dimension Syst Nanostruct, 39, 223(2007).

    [63] Q L Zhang, H W Liu, P F Guo et al. Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. Nano Energy, 32, 28(2017).

    [64] L Li, S M Yang, F Han et al. Optical sensor based on a single CdS nanobelt. Sensors, 14, 7332(2014).

    [65] W C Zhou, Y H Peng, Y L Yin et al. Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Adv, 4, 3005(2014).

    [66] J S Jie, W J Zhang, Y Jiang et al. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Leet, 6, 1887(2006).

    [67] W C Zhou, Y Zhou, Y H Peng et al. Ultrahigh sensitivity and gain white light photodetector based on GaTe/Sn: CdS nanoflake/nanowire heterostructures. Nanotechnology, 25, 445202(2014).

    [68] G Y Gou, G Z Dai, X W Wang et al. High-performance and flexible photodetectors based on P3HT/CdS/CdS: SnS2 superlattice nanowires hybrid films. Appl Phys A, 123, 731(2017).

    [69] X F Wang, W F Song, B Liu et al. High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Funct Materials, 23, 1202(2013).

    [70] G Z Dai, H Y Zou, X F Wang et al. Piezo-phototronic effect enhanced responsivity of photon sensor based on composition-tunable ternary CdSxSe1–x nanowires. ACS Photonics, 4, 2495(2017).

    [71] Y Hao, S Guo, D Weller et al. Position-sensitive array photodetector based on comb-like CdS nanostructure with cone-shape branches. Adv Funct Materials, 29, 1805967(2019).

    [72] A L Pan, W C Zhou, E S P Leong et al. Super-broadly wavelength-tunable semiconductor nanowire lasers on a single substrate. 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, 1(2009).

    [73] Q L Zhang, S W Wang, X X Liu et al. Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity. Nano Energy, 30, 481(2016).

    [74] Y X Wu, Y Xiang, S D Zhao et al. Auto-alignment of CdS nanowires via optical tweezers. Appl Phys A, 128, 200(2022).

    [75] S Guo, X F Wang, X Y Zhao et al. The realization of the nanoscale bar-codes based on CdS branched nanostructure. J Alloys Compd, 969, 172339(2023).

    [76] J Zhang, F H Jiang. Temperature-dependent photoluminescence of Mg-doped CdS nanowires. Phys Lett A, 373, 3888(2009).

    [77] T Y Zhai, X S Fang, L Li et al. One-dimensional CdS nanostructures: Synthesis, properties, and applications. Nanoscale, 2, 168(2010).

    Bo Cao, Ye Tian, Huan Fei Wen, Hao Guo, Xiaoyu Wu, Liangjie Li, Zhenrong Zhang, Lai Liu, Qiang Zhu, Jun Tang, Jun Liu. Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures[J]. Journal of Semiconductors, 2024, 45(9): 091101
    Download Citation