• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 1, 81 (2017)
Kunming XING1、2、*, Ke YANG1、2, Long ZHANG1, Xiaosong WU1、2, Zhigang LI1、2, An WANG1, Yong LIU1, and Min JI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2017.01.013 Cite this Article
    XING Kunming, YANG Ke, ZHANG Long, WU Xiaosong, LI Zhigang, WANG An, LIU Yong, JI Min. Simultaneous detection of CO and CO2 in cigarette mainstream smoke based on TDLAS technology[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 81 Copy Citation Text show less
    References

    [1] Richard R B. Smoke generation inside a burning cigarette: Modifying combustion to develop cigarettes that may be less hazardous to health[J]. Progress in Energy and Combustion Science, 2006, 32(4): 373-385.

    [2] Borgerdinga M, Klusb H. Analysis of complex mixtures cigarette smoke[J]. Experimental and Toxicologic Pathology, 2005, 57(1): 43-73.

    [4] Browne C L, Keith C H, Allen R E. The effect of filter ventilation on the yield and composition of mainstream and sidestream smokes[J]. Beitrage zur Tabakforschung International, 1980, 10(2): 81-90.

    [5] Bacsik Z, McGregor J, Mink J. FTIR analysis of gaseous compounds in the mainstream smoke of regular and light cigarettes[J]. Food and Chemical Toxicology, 2007, 45(2): 266-271.

    [12] Smith C J, So S, Xia L, et al. Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring laboratory and field test[J]. Applied Physics B, 2013, 110(2): 241-248.

    [13] Wang Chuji, Peeyush Sahay. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors (Basel), 2009, 9(10): 8230-8262.

    [14] Deguchi Y, Noda M, Fukuda Y, et al. Industrial applications of temperature and species concentration monitoring using laser diagnostics[J]. Measurement Science and Technology, 2002, 190(7): 2637-2641.

    [17] Chad R, Khosrow N, James D, et al. Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: Application in monitoring respiratory inflammation[J]. Applied Optics, 2002, 41(28): 6018-6029.

    [18] Dave W T, Charles N H Sr, Milton E P. Measurement of acrolein and 1,3-butadiene in a single puff of cigarette smoke using lead-salt tunable diode laser infrared spectroscopy[J]. Spectro Chimica Acta Part A, 2007, 67: 16-24.

    [23] Baker R R. Product formation mechanisms inside a burning cigarette[J]. Progress in Energy and Combusion Science, 1981, 7(2): 135-153.

    [24] Baker R R. A review of pyrolysis studies to unravel reaction steps in burning tobacco[J]. Journal of Analytical and Applied Pyrolysis, 1987, 11: 555-573.

    CLP Journals

    [1] YANG Qingying, CHENG Cunfeng, SUN Yu, LIU Anwen, HU Shuiming. Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 669

    [2] LIU Lifu, FENG Yuxuan, CHEN Dong, YAN Mingyue, WU Qiang. Trace acetylene detection based on mid-infrared laser absorption spectroscopy technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 648

    [3] LU Juncheng, YANG Chaofeng, GUAN Zuguang, CHEN Daru, SHAO Jie. Application of laser absorption spectroscopy in Escherichia coli growth measurement[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 684

    XING Kunming, YANG Ke, ZHANG Long, WU Xiaosong, LI Zhigang, WANG An, LIU Yong, JI Min. Simultaneous detection of CO and CO2 in cigarette mainstream smoke based on TDLAS technology[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 81
    Download Citation