• Chinese Journal of Quantum Electronics
  • Vol. 33, Issue 5, 513 (2016)
Kai WANG1、2、3、*, Zhanwei YAO1、2, Sibing LU1、2、3, Runbing LI1、2, Jin WANG1、2, and Mingsheng ZHAN1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2016.05.001 Cite this Article
    WANG Kai, YAO Zhanwei, LU Sibing, LI Runbing, WANG Jin, ZHAN Mingsheng. A new generation of inertial measurement instrument: Raman-type atom interferometric gyroscope[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 513 Copy Citation Text show less
    References

    [2] Everitt C W F, DeBra D B, Parkinson B W. Gravity probe B: Final results of a space experiment to test general relativity[J]. Phys. Rev. Lett., 2011, 10(22): 221101.

    [3] Xia D Z, Yu C, Kong L. The development of micromachined gyroscope structure and circuitry technology[J]. Sensors, 2014, 14(1): 1394-1473.

    [4] Chow W W, Pedrotti L M, Sanders V E, et al. The ring laser gyro[J]. Rev. Mod. Phys., 1985, 57(1): 67-104.

    [5] Mendes C P J, Boehm J, Schuh H, et al. Earth rotation observed by very long baseline interferometry and ring laser[J]. Pure Appl. Geophys., 2009, 16(8-9): 1499-1517.

    [6] Hurst R B, Stedman G E, Schreiber K U, et al. Experiments with an 834 m2 ring laser interferometer[J]. J. Appl. Phys., 2009, 105(11): 113115.

    [7] Stedman G E, Schreiber K U, Bilger H R. On the detectability of the Lense-Thirring field from rotating laboratory masses using ring laser gyroscope interferometers[J]. Class. Quantum Gravity, 2003, 20(3): 2527-2540.

    [8] Sanders S J, Strandjord L K, Mead D. Fiber optic gyro technology trends a Honeywell perspective[C]. Proceeding of OFS 2002, Hilton Portland, Portland, OR, USA, 2002: 5-8.

    [9] Kornack T W, Ghosh R K, Romalis M V. Nuclear spin gyroscope based on an atomic magnetometer[J]. Phys. Rev. Lett., 2005, 95(23): 230801.

    [10] Avenel O, Mukharsky Y, Varoquaux E. Superfluid gyrometers[J]. J. Low. Temp. Phys., 2004, 135(5-6): 745-772.

    [11] Narayana S, Sato Y. Superfluid quantum interference in multiple-turn reciprocal geometry[J]. Phys. Rev. Lett., 2011, 10(25): 255301.

    [12] Gustavson T L, Bouyer P, et al. Precision rotation measurements with an atom interferometer gyroscope[J]. Phys. Rev. Lett., 1997, 78(11): 2046-2049.

    [13] Riehle F, Kisters Th, Witte A, et al. Optical Ramsey spectroscopy in a rotating frame Sagnac effect in a matter-wave interferometer[J]. Phys. Rev. Lett., 1991, 67(2): 177-180.

    [14] Lenef A, Hammond T D, Smith E T, et al. Rotation sensing with an atom interferometer[J]. Phys. Rev. Lett., 1997, 78(5): 760-763.

    [15] Gustavson T L, Landragin A, et al. Rotation sensing with a dual atom- interferometer Sagnac gyroscope[J]. Class. Quantum Gravity, 2000, 17(12): 2385-2398.

    [16] Derfee D S, Shaham Y K, Kasevich M A. Long- term stability of an area- reversible atom interferometer Sagnac gyroscope[J]. Phys. Rev. Lett., 2006, 97(24): 801-805.

    [17] Gauguet A, Canuel B, Lévèque T, et al. Characterization and limits of a cold-atom Sagnac interferometer[J]. Phys. Rev. A, 2009, 80(6): 3604-3616.

    [18] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry[J]. Phys. Rev. Lett., 2011, 107(13): 133001.

    [19] Giltner D M, et al. Atom interferometer based on Bragg scattering from standing light waves[J]. Phys. Rev. Lett., 1995, 75(14): 2638-2641.

    [20] Muller H, Chiow S W, Long Q, et al. Atom interferometry with up to 24-photon-momentum-transfer beam splitters[J]. Phys. Rev. Lett., 2008, 100(18): 180405.

    [21] Altin P A, Johnsson M T, Negnevitsky V, et al. Precision atomic gravimeter based on Bragg diffraction[J]. New J. Phys., 2013, 15(2): 023009.

    [22] Clade P, Guellati-Khelifa S, et al. Large momentum beam splitter using Bloch oscillations[J]. Phys. Rev. Lett., 2009, 102(24): 240402.

    [23] McDonald G D, Kuhn C C N, Bennetts S, et al. 80k momentum separation with Bloch oscillations in an optically guided atom interferometer[J]. Phys. Rev. A, 2013, 88(5): 053620.

    [24] McDonald G D, Keal H, Altin P A, et al. Optically guided linear Mach-Zehnder atom interferometer[J]. Phys. Rev. A, 2013, 87(1): 013632.

    [25] Wang J, Zhou L, Li R B, et al. Cold atom interferometers and their applications in precision measurements[J]. Front. Phys. China, 2009, 4(2): 179-189.

    [26] Ng L C, Pines D J. Characterization of ring laser gyro performance using the Allan variance method[J]. J. Guidance, 1996, 20(1): 211-214.

    [27] Ramalingam R, Anitha G, Shanmugam J. Microelectromechanical systems inertial measurement unit error modelling and error analysis for low-cost strap down inertial navigation system[J]. Def. Sci. J., 2009, 59(6): 650-658.

    [28] Itano W M, Bergquist J C, Bollinger J J, et al. Quantum projection noise: Population fluctuations in two level systems[J]. Phys. Rev. A, 1993, 47(5): 3554-3570.

    [29] Santarelli G, Laurent P, Lemonde P, et al. Quantum projection noise in an atomic fountain: A high stability cesium frequency standard[J]. Phys. Rev. Lett., 1999, 82(23): 4619-4622.

    [30] Scully M O, Dowling J P. Quantum-noise limits to matter-wave interferometry[J]. Phys. Rev. A, 1993, 48(4): 3186-3190.

    [31] Jacobson J, Bjork G, Yamamoto Y. Quantum limit for the atom-light interferometer[J]. Appl. Phys. B, 1995, 60(2-3): 187-191.

    [32] Dowling J P. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope[J]. Phys. Rev. A, 1998, 57(6): 4736-4746.

    [33] Tackmann G, Berg P, Schubert C, et al. Self-alignment of a compact large-area atomic Sagnac interferometer[J]. New J. Phys., 2012, 14(1): 015002.

    [34] Schreiber K U, Wells J P R. Invited review article: Large ring lasers for rotation sensing[J]. Rev. Sci. Instrum., 2013, 84(4): 041101.

    [35] Bouyer P, Gustavson T, Haritos K, et al. Microwave signal generation with optical injection locking[J]. Opt. Lett., 1996, 21(18): 1502.

    [36] Biedermann G M, Wu X, et al. Low-noise simultaneous fluorescence detection of two atomic states[J]. Opt. Lett., 2009, 34(3): 347-349.

    [37] Yver-Leduc F, Cheinet P, Fils J, et al. Reaching the quantum noise limit in a high-sensitivity cold-atom inertial sensor[J]. J. Opt. B-Quantum Semiclass. Opt., 2003, 5(2): S136-S142.

    [38] Fils J, Leduc F, Bouyer P, et al. Influence of optical aberrations in an atomic gyroscope[J]. Eur. Phys. J. D, 2005, 3(3): 257-260.

    [39] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Phys. Rev. Lett., 2006, 97(1): 402-406.

    [40] Gauguet A, Mehlstubler T E, et al. Off-resonant Raman transition impact in an atom interferometer[J]. Phys. Rev. A, 2008, 78(4): 043615.

    [41] Müller T, Wendrich T, Gilowski M, et al. Versatile compact atomic source for high-resolution dual atom interferometry[J]. Phys. Rev. A, 2007, 7(6): 063611.

    [42] Müller T, Gilowski M, Zaiser M, et al. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. Eur. Phys. J. D, 2009, 53(3): 273-281.

    [43] Wang P, Li R B, Yan H, et al. Demonstration of a Sagnac type cold atom interferometer with stimulated Raman transitions[J]. Chin. Phys. Lett., 2007, 24(1): 27-30.

    [44] Li R B, Wang P, Yan H, et al. Magnetic field dependence of coherent population transfer by the stimulated Raman transition[J]. Phys. Rev. A, 2008, 77(3): 033425.

    [45] Li R B, Zhou L, Wang J, et al. Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions[J]. Opt. Commun., 2009, 282(7): 1340-1344.

    [46] Zhou L, Xiong Z, Yang W, et al. Measurement of local gravity via a cold atom interferometer[J]. Chin. Phys. Lett., 2011, 28(1): 013701.

    [47] Zhou L, Xiong Z Y, Yang W, et al. Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement[J]. Gen. Relativ. Gravit., 2011, 43: 1931-1942.

    [48] Li R B, Wang J, Zhan M. New generation inertial navigation technology: Cold atom gyroscope[J]. Gnss World of China, 2010, 4: 1-5.

    [49] Tang B, Zhou L, Xiong Z, et al. A programmable broadband low frequency active vibration isolation system for atom interferometry[J]. Rev. Sci. Instrum., 2014, 85(9): 093109.

    [50] Wang X J, Feng Y Y, Xue H B, et al. A cold 87Rb atomic beam[J]. Chin. Phys. B, 2011, 20(12): 126701.

    [51] Xue H B, Feng Y Y, Chen S, et al. A continuous cold atomic beam interferometer[J]. J. Appl. Phys., 2015(117): 094901.

    [52] Chiow S W, Kovachy T, Chien H C, et al. 102k large area atom interferometers[J]. Phys. Rev. Lett., 2011, 107(13): 130403.

    [53] Dickerson S M, Hogan J M, Sugarbaker A, et al. Multiaxis inertial sensing with long-time point source atom interferometry[J]. Phys. Rev. Lett., 2013, 111(08): 083001.

    [54] Gross C, Zibold T, Nicklas E, et al. Nonlinear atom interferometer surpasses classical precision limit[J]. Nature, 2010, 464: 1165-1169.

    [55] Muntinga. H, Ahlers. H, Krutzik. M, et al. Interferometry with Bose-Einstein condensates in microgravity[J]. Phys. Rev. Lett., 2013, 110(9): 093602.

    [56] Wu S J, Su E, et al. Demonstration of an area-enclosing guided-atom interferometer for rotation sensing[J]. Phys. Rev. Lett., 2007, 99(17): 173201.

    [57] McGuinness H J, Rakholia A V, et al. High data-rate atom interferometer for measuring acceleration[J]. Appl. Phys. Lett., 2012, 100(1): 011106.

    CLP Journals

    [1] Song Peishuai, Ma Jing, Ma Zhe, Zhang Shuyuan1, Si Chaowei, Han Guowei, Ning Jin, Yang Fuhua, Wang Xiaodong. Research and Development Status of Quantum Navigation Technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90003

    WANG Kai, YAO Zhanwei, LU Sibing, LI Runbing, WANG Jin, ZHAN Mingsheng. A new generation of inertial measurement instrument: Raman-type atom interferometric gyroscope[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 513
    Download Citation