• Photonics Research
  • Vol. 11, Issue 8, 1397 (2023)
Zhibin Li1、2, Ziye Wu1, Zhuoqi Li1, Liangxun Ou1, Wenxiang Zhang1, Zhicong Lai1、2, Yu Zhang1、2, Mengyuan Xie1, Jieyuan Tang1, Wenguo Zhu1, Huadan Zheng1, Yongchun Zhong1, Xiong Deng3, Xihua Zou3, Zhe Chen1、2, and Jianhui Yu1、2、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
  • 2Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
  • 3Center for Information Photonics and Communications, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
  • show less
    DOI: 10.1364/PRJ.492840 Cite this Article Set citation alerts
    Zhibin Li, Ziye Wu, Zhuoqi Li, Liangxun Ou, Wenxiang Zhang, Zhicong Lai, Yu Zhang, Mengyuan Xie, Jieyuan Tang, Wenguo Zhu, Huadan Zheng, Yongchun Zhong, Xiong Deng, Xihua Zou, Zhe Chen, Jianhui Yu. High-sensitivity and fast-response fiber optic temperature sensor using an anti-resonant reflecting optical waveguide mechanism[J]. Photonics Research, 2023, 11(8): 1397 Copy Citation Text show less
    References

    [1] H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. Lu, T. Hyeon. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol., 11, 566-572(2016).

    [2] H. C. Ates, P. Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder, J. J. Collins, C. Dincer. End-to-end design of wearable sensors. Nat. Rev. Mater., 7, 887-907(2022).

    [3] X. Ren, P. K. Chan, J. Lu, B. Huang, D. C. Leung. High dynamic range organic temperature sensor. Adv. Mater., 25, 1291-1295(2013).

    [4] H. Chung, J. Li, Y. Kim, J. M. Van Os, S. H. Brounts, C. Y. Choi. Using implantable biosensors and wearable scanners to monitor dairy cattle’s core body temperature in real-time. Comput. Electron. Agric., 174, 105453(2020).

    [5] V. Madonna, P. Giangrande, L. Lusuardi, A. Cavallini, C. Gerada, M. Galea. Thermal overload and insulation aging of short duty cycle, aerospace motors. IEEE Trans. Ind. Electron., 67, 2618-2629(2019).

    [6] J. Shin, B. Jeong, J. Kim, V. B. Nam, Y. Yoon, J. Jung, S. Hong, H. Lee, H. Eom, J. Yeo. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater., 32, 1905527(2020).

    [7] J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater., 29, 1902898(2019).

    [8] H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photon. Rev., 15, 2000319(2021).

    [9] D. Zhang, J. Wang, Y. Wang, X. Dai. A fast response temperature sensor based on fiber Bragg grating. Meas. Sci. Technol., 25, 075105(2014).

    [10] H. Wang, C. Li, L. Liang, K. Jiang, S. Dai, H. Wu, X. Tong. Fast response characteristics of fiber Bragg grating temperature sensors and explosion temperature measurement tests. Sens. Actuators A Phys., 354, 114236(2023).

    [11] H. Meng, W. Shen, G. Zhang, C. Tan, X. Huang. Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature. Sens. Actuators B Chem., 150, 226-229(2010).

    [12] M. D. Wales, P. Clark, K. Thompson, Z. Wilson, J. Wilson, C. Adams. Multicore fiber temperature sensor with fast response times. OSA Contin., 1, 764-771(2018).

    [13] H. Luo, Q. Sun, Z. Xu, D. Liu, L. Zhang. Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach–Zehnder interferometer. Opt. Lett., 39, 4049-4052(2014).

    [14] M. Lu, X. Zhang, Y. Liang, L. Li, J.-F. Masson, W. Peng. Liquid crystal filled surface plasmon resonance thermometer. Opt. Express, 24, 10904-10911(2016).

    [15] C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, L. Yang. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Appl. Phys. Lett., 94, 231119(2009).

    [16] N. Yao, X. Wang, S. Ma, X. Song, S. Wang, Z. Shi, J. Pan, S. Wang, J. Xiao, H. Liu. Single optical microfiber enabled tactile sensor for simultaneous temperature and pressure measurement. Photon. Res., 10, 2040-2046(2022).

    [17] J. Luo, G.-S. Liu, W. Zhou, S. Hu, L. Chen, Y. Chen, Y. Luo, Z. Chen. A graphene–PDMS hybrid overcoating enhanced fiber plasmonic temperature sensor with high sensitivity and fast response. J. Mater. Chem. C, 8, 12893-12901(2020).

    [18] S. Hu, J. Chen, J. Liang, J. Luo, W. Shi, J. Yuan, Y. Chen, L. Chen, Z. Chen, G.-S. Liu. Hyperbolic-metamaterials-based SPR temperature sensor enhanced by a nanodiamond-PDMS hybrid for high sensitivity and fast response. ACS Appl. Mater. Interfaces, 14, 42412-42419(2022).

    [19] S. Liu, Y. Ji, L. Cui, W. Sun, J. Yang, H. Li. Humidity-insensitive temperature sensor based on a quartz capillary anti-resonant reflection optical waveguide. Opt. Express, 25, 18929-18939(2017).

    [20] L. Haji, M. Hiraoui, N. Lorrain, M. Guendouz. Anti resonant reflecting optical waveguide structure based on oxidized porous silicon for label free bio sensing applications. Appl. Phys. Lett., 100, 111102(2012).

    [21] D. Liu, F. Ling, R. Kumar, A. K. Mallik, K. Tian, C. Shen, G. Farrell, Y. Semenova, Q. Wu, P. Wang. Sub-micrometer resolution liquid level sensor based on a hollow core fiber structure. Opt. Lett., 44, 2125-2128(2019).

    [22] R. Gao, D.-F. Lu, J. Cheng, Y. Jiang, L. Jiang, Z.-M. Qi. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sens. Actuators B Chem., 222, 618-624(2016).

    [23] R. Gao, D.-F. Lu, J. Cheng, Y. Jiang, L. Jiang, J. S. Ye, Z.-M. Qi. Magnetic fluid-infiltrated anti-resonant reflecting optical waveguide for magnetic field sensing based on leaky modes. J. Lightwave Technol., 34, 3490-3495(2016).

    [24] W. Ni, C. Yang, Y. Luo, R. Xia, P. Lu, D. J. J. Hu, S. Danto, P. P. Shum, L. Wei. Recent advancement of anti-resonant hollow-core fibers for sensing applications. Photonics, 8, 128(2021).

    [25] Y. Yu, X. Zhang, K. Wang, Z. Wang, H. Sun, Y. Yang, C. Deng, Y. Huang, T. Wang. Coexistence of transmission mechanisms for independent multi-parameter sensing in a silica capillary-based cascaded structure. Opt. Express, 29, 27938-27950(2021).

    [26] X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, T. Cheng. High-sensitivity SPR temperature sensor based on hollow-core fiber. IEEE Trans. Instrum. Meas., 69, 8494-8499(2020).

    [27] J. Zhao, Y. Zhao, R.-Q. Lv, X.-G. Li, C.-L. Zhu, Q. Zhao. Simultaneous measurement of temperature and pressure based on ring-shaped sensing structure with polymer coated no-core fiber. IEEE Sens. J., 21, 22783-22791(2021).

    [28] C. He, J. Fang, Y. Zhang, Y. Yang, J. Yu, J. Zhang, H. Guan, W. Qiu, P. Wu, J. Dong. High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane. Opt. Express, 26, 9686-9699(2018).

    [29] J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, Z. Chen. Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing. IEEE J. Sel. Top. Quantum Electron., 23, 238-245(2016).

    [30] Y.-E. Fan, T. Zhu, L. Shi, Y.-J. Rao. Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation. Appl. Opt., 50, 4604-4610(2011).

    [31] I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, J. Villatoro. Optical fiber temperature sensor based on a microcavity with polymer overlay. Opt. Express, 24, 5654-5661(2016).

    [32] N. Litchinitser, A. Abeeluck, C. Headley, B. Eggleton. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett., 27, 1592-1594(2002).

    [33] D. Liu, W. Li, Q. Wu, H. Zhao, F. Ling, K. Tian, C. Shen, W. Han, F. Wei, G. Farrell. High sensitivity liquid level sensor for microfluidic applications using a hollow core fiber structure. Sens. Actuators A Phys., 332, 113134(2021).

    [34] N. Yang, Q. Qiu, J. Su, S.-J. Shi. Research on the temperature characteristics of optical fiber refractive index. Optik, 125, 5813-5815(2014).

    [35] . JIS Handbook(2010).

    [36] X. Zhang, H. Pan, H. Bai, M. Yan, J. Wang, C. Deng, T. Wang. Transition of Fabry–Perot and antiresonant mechanisms via a SMF-capillary-SMF structure. Opt. Lett., 43, 2268-2271(2018).

    [37] J. Tang, Z. Li, M. Xie, Y. Zhang, W. Long, S. Long, T. Wen, Z. Fang, W. Zhu, H. Zheng. Optical fiber bio-sensor for phospholipase using liquid crystal. Biosens. Bioelectron., 170, 112547(2020).

    [38] J.-H. Wen, J. Wang, L. Yang, Y.-F. Hou, D.-H. Huo, E.-L. Cai, Y.-X. Xiao, S.-S. Wang. Response time of microfiber temperature sensor in liquid environment. IEEE Sens. J., 20, 6400-6407(2020).

    [39] A. Ward, D. Broido, D. A. Stewart, G. Deinzer. Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B, 80, 125203(2009).

    [40] G. Liu, M. Han, W. Hou. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express, 23, 7237-7247(2015).

    [41] B. Hill, S. H. Annesley. Monitoring respiratory rate in adults. Br. J. Nurs., 29, 12-16(2020).

    [42] X. Lian, Q. Wu, G. Farrell, Y. Semenova. High-sensitivity temperature sensor based on anti-resonance in high-index polymer-coated optical fiber interferometers. Opt. Lett., 45, 5385-5388(2020).

    [43] H. Deng, X. Jiang, X. Huang, M. Chen, H. Yang, Y. Cheng, C. Teng, R. Xu, L. Yuan. A temperature sensor based on composite optical waveguide. J. Lightwave Technol., 40, 2663-2669(2022).

    [44] L. Hou, C. Zhao, B. Xu, B. Mao, C. Shen, D. Wang. Highly sensitive PDMS-filled Fabry–Perot interferometer temperature sensor based on the Vernier effect. Appl. Opt., 58, 4858-4865(2019).

    [45] Y.-J. Rao, M. Deng, T. Zhu, H. Li. In-line Fabry–Perot etalons based on hollow-corephotonic bandgap fibers for high-temperature applications. J. Lightwave Technol., 27, 4360-4365(2009).

    [46] L. Wang, L. Yang, C. Zhang, C. Miao, J. Zhao, W. Xu. High sensitivity and low loss open-cavity Mach-Zehnder interferometer based on multimode interference coupling for refractive index measurement. Opt. Laser Technol., 109, 193-198(2019).

    [47] S. J. Harley, E. A. Glascoe, R. S. Maxwell. Thermodynamic study on dynamic water vapor sorption in Sylgard-184. J. Phys. Chem. B, 116, 14183-14190(2012).

    Zhibin Li, Ziye Wu, Zhuoqi Li, Liangxun Ou, Wenxiang Zhang, Zhicong Lai, Yu Zhang, Mengyuan Xie, Jieyuan Tang, Wenguo Zhu, Huadan Zheng, Yongchun Zhong, Xiong Deng, Xihua Zou, Zhe Chen, Jianhui Yu. High-sensitivity and fast-response fiber optic temperature sensor using an anti-resonant reflecting optical waveguide mechanism[J]. Photonics Research, 2023, 11(8): 1397
    Download Citation