[1] BC Kress. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets(2020).
[2] JH Xiong, EL Hsiang, ZQ He et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl, 10, 216(2021).
[3] K Yin, EL Hsiang, JY Zou et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl, 11, 161(2022).
[4] YQ Lu, Y Li. Planar liquid crystal polarization optics for near-eye displays. Light Sci Appl, 10, 122(2021).
[5] Y. Ding, et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight, 3, 24(2023).
[6] CL Chang, K Bang, G Wetzstein et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica, 7, 1563-1578(2020).
[7] HS Park, R Hoskinson, H Abdollahi et al. Compact near-eye display system using a superlens-based microlens array magnifier. Opt Express, 23, 30618-30633(2015).
[8] JH Xiong, ST Wu. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight, 1, 3(2021).
[9] X Yang, Y Lin, TZ Wu et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv, 5, 210123(2022).
[10] Y Li, XJ Huang, SX Liu et al. Metasurfaces for near-eye display applications. Opto-Electron Sci, 2, 230025(2023).
[11] JA LaRussa, AT Gill. The holographic pancake window TM. Proc SPIE, 162, 120-129(1978).
[12] TL Wong, ZS Yun, G Ambur et al. Folded optics with birefringent reflective polarizers. Proc SPIE, 10335, 103350E(2017).
[13] Y Geng, G Jacques, W Brian et al. Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light. Proc SPIE, 10676, 1067606(2018).
[14] YNQ Li, T Zhan, ZY Yang et al. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt Express, 29, 6011-6020(2021).
[15] J Le, B Hao, D Aastuen et al. High resolution reflective polarizer lens for catadioptric VR optics with accommodating eye box design. Proc SPIE, 12449, 124490O(2023).
[16] JY Zou, T Zhan, EL Hsiang et al. Doubling the optical efficiency of VR systems with a directional backlight and a diffractive deflection film. Opt Express, 29, 20673-20686(2021).
[17] EL Hsiang, ZY Yang, T Zhan et al. Optimizing the display performance for virtual reality systems. OSA Continuum, 4, 3052-3067(2021).
[18] Y Qian, Z Yang, YH Huang et al. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci, 1, 220021(2022).
[19] YH Wu, CH Tsai, YH Wu et al. 5-2: Invited paper: high dynamic range 2117-ppi LCD for VR displays. SID Symp Dig Tech Pap, 54, 36-39(2023).
[20] S Komura, K Okuda, H Kijima. 49-4: thin and lightweight head-mounted displays with polarized laser backlights and holographic optics. SID Symp Dig Tech Pap, 53, 636-639(2022).
[21] ZY Luo, YQ Ding, Y Rao et al. High-efficiency folded optics for near-eye displays. J Soc Inf Display, 31, 336-343(2023).
[22] N Usukura, K Minoura, R Maruyama. Novel pancake-based HMD optics to improve light efficiency. J Soc Inf Display, 31, 344-354(2023).
[23] BEA Saleh, MC Teich.
[24] M Inoue, M Levy, AV Baryshev.
[25] M Berent, AA Rangelov, NV Vitanov. Broadband Faraday isolator. J Opt Soc Am A, 30, 149-153(2013).
[26] QC Hou, DW Cheng, Y Li et al. Stray light analysis and suppression method of a pancake virtual reality head-mounted display. Opt Express, 30, 44918-44932(2022).
[27] DW Cheng, DW Cheng, DW Cheng et al. Optical design and pupil swim analysis of a compact, large EPD and immersive VR head mounted display. Opt Express, 30, 6584-6602(2022).
[28] ZH Zhang, Z Wu, Z Zhang et al. Characteristics and recent development of fluoride magneto-optical crystals. Magnetochemistry, 9, 41(2023).
[29] PA Schulz. Wavelength independent Faraday isolator. Appl Opt, 28, 4458-4464(1989).
[30] Z Nelson, L Delage-Laurin, TM Swager. ABCs of faraday rotation in organic materials. J Am Chem Soc, 144, 11912-11926(2022).
[31] KJ Carothers, RA Norwood, J Pyun. High Verdet constant materials for magneto-optical faraday rotation: a review. Chem Mater, 34, 2531-2544(2022).
[32] S Vandendriessche, Cleuvenbergen S Van, P Willot et al. Giant faraday rotation in mesogenic organic molecules. Chem Mater, 25, 1139-1143(2013).
[33] M Levy. Nanomagnetic route to bias-magnet-free, on-chip Faraday rotators. J Opt Soc Am B, 22, 254-260(2005).
[34] D Karki, V Stenger, A Pollick et al. Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators. J Appl Phys, 121, 233101(2017).
[35] RR Abbott, VJ Fratello, SJ Licht et al. Article comprising a faraday rotator that does not require a bias magnet(2004).