• Laser & Optoelectronics Progress
  • Vol. 54, Issue 5, 51004 (2017)
Zhou Hangcheng1、2、3、*, Rao Xuejun1、2, and Rao Changhui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.051004 Cite this Article Set citation alerts
    Zhou Hangcheng, Rao Xuejun, Rao Changhui. Performance Comparison of Absolute Difference Function and Absolute Difference Function-Squared Using in Solar Granulation Images[J]. Laser & Optoelectronics Progress, 2017, 54(5): 51004 Copy Citation Text show less
    References

    [1] Rimmele T R, Marino J. Solar adaptive optics[J]. Living Rev Sol Phys, 2011, 8(2): 30-31.

    [2] Rimmele T R, Radick R R. Solar adaptive optics at the national solar observatory[C]. Proc SPIE, 1998, 3353: 72-81.

    [3] Wirth A, Ruquist R. Adaptive optical correction for extended source imaging[C]. Proc SPIE, 1986, 551: 127-130.

    [4] Rimmele T R. Solar adaptive optics[C]. Proc SPIE, 2000, 4007: 218-231.

    [5] Rimmele T R. Recent advances in solar adaptive optics[C]. Proc SPIE, 2004, 5490: 34-46.

    [6] Rao Changhui, Jiang Wenhan, Ling Ning. Tracking algorithm for low contrast extended object[J]. Acta Astronomica Sinica, 2001, 42(3): 329-338.

    [7] Rao Changhui, Zhang Xuejun, Jiang Wenhan. Simulation study on correlating Hartmann-Shack wavefront sensor for solar granulation[J]. Acta Optica Sinica, 2002, 22(3): 285-289.

    [8] Peng X F, Li M, Rao C H. Architecture design of FPGA-based wavefront processor for correlating Shack-Hartmann sensor[C]. Proc SPIE, 2008, 7156: 71561B.

    [9] von der Lühe O. A study of a correlation tracking method to improve imaging quality of ground-based solar telescopes[J]. Astron Astrophys, 1983, 119(1): 85-94.

    [10] Zhu L, Gu N T, Chen S Q, et al. Real time controller for 37-element low-order solar adaptive optics system at 1 m new vacuum solar telescope[C]. Proc SPIE, 2012, 8415: 84150V.

    [11] Miura N, Yokoyama F, Nefu M, et al. Optical setup and wavefront sensor for solar adaptive optics at the domeless solar telescope, Hida observatory[C]. Proc SPIE, 2010, 7736: 773654.

    [12] Cao W, Gorceix N, Coulter R, et al. Scientific instrumentation for the 1.6 m new solar telescope in big bear[J]. Astron Nachr, 2010, 331(6): 636-639.

    [13] Lukin V, Botygina N, Emaleev O, et al. Wavefront sensors for adaptive optical systems[J]. Optoelectronics, Instrumentation and Data Processing, 2008, 44(4): 377-383.

    [14] Poyneer L A. Scene-based Shack-Hartmann wave-front sensing analysis and simulation[J]. Appl Opt, 2003, 42(29): 5807-5815.

    [15] Hardy J W, Hudgin R H. A comparison of wavefront sensing systems[C]. Technical Symposium East, 1978, 141: 67-73.

    [16] Lfdahl M G. Evaluation of image-shift measurement algorithms for solar Shack-Hartmann wavefront sensors[J]. Astron Astrophys, 2010, 524: A90.

    [17] von der Lühe O, Widener A L, Rimmele T, et al. A solar feature correlation tracker for ground-based telescopes[J]. Astron Astrophys, 1989, 224: 351-360.

    [18] Zeng Renchang, Liu Xiaohua, Hu Xinqi, et al. Frequency-domain iterative algorithm for extended scene Shack-Hartmann wavefront sensing[J]. Acta Optica Sinica, 2012, 32(7): 0701006.

    [19] Rao C H, Zhu L, Rao X J, et al. 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan astronomical observatory[J]. Chinese Optics Letters, 2010, 8(10): 966-968.

    [20] Jiang A, Ye B, Sun J, et al. Correlation tracker system for space solar telescope[C]. Proc SPIE, 2003, 4839: 307-311.

    [21] Tian Q, Huhns M N. Algorithm for subpixel registration[J]. Computer Vision, Graphics and Image Processing, 1986, 35(2): 220-233.

    [23] November L J, Simon G W. Precise proper-motion measurement of solar granulation[J]. Astrophys J, 1988, 333(1): 427-442.

    [24] Shimizu M, Okutomi M. Sub-pixel estimation error cancellation on area-based matching[J]. Int J Comput Vision, 2005, 63(3): 207-224.

    [25] Yang Fusheng. Random signal analysis[M]. Beijing: Tsinghua University Press, 1990: 142-143.

    Zhou Hangcheng, Rao Xuejun, Rao Changhui. Performance Comparison of Absolute Difference Function and Absolute Difference Function-Squared Using in Solar Granulation Images[J]. Laser & Optoelectronics Progress, 2017, 54(5): 51004
    Download Citation