• Chinese Journal of Quantum Electronics
  • Vol. 30, Issue 4, 455 (2013)
Kui HOU*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2013.04.012 Cite this Article
    HOU Kui. A quantum-information splitting scheme based on non-maximally six-qubit cluster state[J]. Chinese Journal of Quantum Electronics, 2013, 30(4): 455 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70: 1895-1899.

    [2] Bennett C H, et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett., 1992, 69: 2881-2884.

    [3] Gisin N, Massar S. Optimal quantum cloning machines [J]. Phys. Rev. Lett., 79: 2153-2156.

    [5] Lo H K. Classical-communication cost in distributed quantum-information processing: A generalization of quantum communication complexity [J]. Phys. Rev. A, 2000, 62: 012313.

    [6] Pati A K. Minimum classical bit for remote preparation and measurement of a qubit [J]. Phys. Rev. A, 2001, 63: 014302.

    [7] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing [J]. Phys. Rev. A, 1999, 59: 1829.

    [8] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting [J]. Phys. Rev. A, 1999, 59: 162.

    [9] Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement [J]. Phys. Rev. Lett., 2002, 89: 187902.

    [10] Hillery M, Bu ek V, Berthiaume A. Quantum secret sharing [J]. Phys. Rev. A, 1999, 59: 1829.

    [12] Deng Fuguo, et al. Bidirectional quantum secret sharing and secret splitting with polarized single photons [J]. Phys. Lett. A, 2005, 337: 329.

    [14] Lance A M, Symal T, Bowen W P, et al. Tripartite quantum state sharing [J]. Phys. Rev. Lett., 2004, 92: 177903.

    [15] Deng Fuguo, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs [J]. Phys. Rev. A, 2005, 72: 044301.

    [16] Li Xihan, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state [J]. J. Phys. B, 2006, 39: 1975.

    [17] Zheng S B. Splitting quantum information via W states [J]. Phys. Rev. A, 2006, 74: 054303.

    [18] Hou Kui, Li Yibao, Shi Shouhua. Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements [J]. Opt. Commun., 2010, 283: 1961-1965.

    [19] Gordon G, et al. Generalized quantum-state sharing [J]. Phys. Rev. A, 2006, 73: 062316.

    [20] Muralidharan S, Panigrahi P K. Quantum-information splitting using multipartite cluster states [J]. Phys. Rev. A, 2008, 78: 062333.

    [21] Wang Xinwen, Zhang Dengyu, Tang Shiqing, et al. Entanglement swapping for cluster-class states and its applications in quantum information processing [J]. Int. J. Theor. Phys., 2012, 51: 1978-1988.

    [22] Dai H Y, Chen P X, Liang L M, et al. Classical communication cost and remote preparation of the four-particle GHZ class state [J]. Phys. Lett. A, 2006, 355: 285-288.

    [23] Li Wanli, Li Chuanfeng, Guo Guangcan. Probabilistic teleportation and entanglement matching [J]. Phys. Rev. A, 2000, 61: 034301.

    [24] Zhang Ming, Dai Hongyi, Chen Pingxing, et al. Remote preparation of an entangled two-qubit state with three parties [J]. Chin. Phys. B, 2008, 17: 27-33.

    [25] Raussendorf R, Briegel H J. A one-way quantum computer [J]. Phys. Rev. Lett., 2001, 86: 5188.

    [26] Xia Yia, Song Jie, Song Heshan. Classical communication help and probabilistic teleportation with one-dimensional non-maximally entangled cluster states [J]. Int. J. Theor. Phys., 2008, 47: 1552-1558.

    [27] Hou Kui, Wang Jing, Lu Yilin, et al. Joint remote preparation of a multipartite GHZ-class state [J]. Int. J. Theor. Phys., 2009, 48: 2005-2015.

    HOU Kui. A quantum-information splitting scheme based on non-maximally six-qubit cluster state[J]. Chinese Journal of Quantum Electronics, 2013, 30(4): 455
    Download Citation