• Photonics Insights
  • Vol. 2, Issue 1, R01 (2023)
Tao Li1、*, Chen Chen1、*, Xingjian Xiao1, Ji Chen2, Shanshan Hu1, and Shining Zhu1、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, School of Physics, Nanjing University, Nanjing, China
  • 2National Mobile Communications Research Laboratory, School of Information Science and Engineering, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, China
  • show less
    DOI: 10.3788/PI.2023.R01 Cite this Article Set citation alerts
    Tao Li, Chen Chen, Xingjian Xiao, Ji Chen, Shanshan Hu, Shining Zhu. Revolutionary meta-imaging: from superlens to metalens[J]. Photonics Insights, 2023, 2(1): R01 Copy Citation Text show less
    References

    [1] E. Hecht. Optics(2001).

    [2] M. Fernández-Suárez, A. Y. Ting. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol., 9, 929(2008).

    [3] K. I. Willig et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935(2006).

    [4] T. A. Klar, S. W. Hell. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett., 24, 954(1999).

    [5] G. H. Patterson, J. Lippincott-Schwartz. A photoactivatable GFP for selective photolabeling of proteins and cells. Science, 297, 1873(2002).

    [6] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793(2006).

    [7] J. N. Mait, G. W. Euliss, R. A. Athale. Computational imaging. Adv. Opt. Photonics, 10, 409(2018).

    [8] A. M. Maiden, J. M. Rodenburg. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 109, 1256(2009).

    [9] M. T. Alonso, P. López-Dekker, J. J. Mallorquí. A novel strategy for radar imaging based on compressive sensing. IEEE Trans. Geosci. Remote Sens., 48, 4285(2010).

    [10] G. Zheng et al. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys., 3, 207(2021).

    [11] Y. Liu, X. Zhang. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev., 40, 2494(2011).

    [12] C. Enkrich et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett., 95, 203901(2005).

    [13] H.-K. Yuan et al. A negative permeability material at red light. Opt. Express, 15, 1076(2007).

    [14] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77(2001).

    [15] V. M. Shalaev et al. Negative index of refraction in optical metamaterials. Opt. Lett., 30, 3356(2005).

    [16] G. Dolling et al. Negative-index metamaterial at 780 nm wavelength. Opt. Lett., 32, 53(2007).

    [17] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966(2000).

    [18] J. Valentine et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376(2008).

    [19] N. Fang et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534(2005).

    [20] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 7, 435(2008).

    [21] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [22] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [23] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190(2016).

    [24] S. Zhang et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt. Express, 24, 18024(2016).

    [25] A. Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [26] S. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [27] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220(2018).

    [28] M. Meem et al. Broadband lightweight flat lenses for long-wave infrared imaging. Proc. Natl. Acad. Sci., 116, 21375(2019).

    [29] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [30] F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7, 624(2020).

    [31] H. Liang et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 6, 1461(2019).

    [32] E. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. für mikroskopische Anat., 9, 413(1873).

    [33] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ε and μ. Phys.-Usp., 10, 509(1968).

    [34] J. B. Pendry et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773(1996).

    [35] J. B. Pendry et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47, 2075(1999).

    [36] A. V. Kildishev, V. M. Shalaev. Engineering space for light via transformation optics. Opt. Lett., 33, 43(2008).

    [37] A. A. High et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192(2015).

    [38] R. V. Craster, S. Guenneau. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, 166(2012).

    [39] R. Zhu et al. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun., 5, 5510(2014).

    [40] D. Wang et al. Realization of broadband polarization-insensitive negative refraction using water-based metamaterial. Mater. Res. Express, 9, 75801(2022).

    [41] J. D. Joannopoulos, P. R. Villeneuve, S. Fan. Photonic crystals: putting a new twist on light. Nature, 386, 143(1997).

    [42] M. E. Stewart et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci., 103, 17143(2006).

    [43] V. M. Shalaev. Optical negative-index metamaterials. Nat. Photonics, 1, 41(2007).

    [44] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917(2012).

    [45] R. H. Ritchie. Plasma losses by fast electrons in thin films. Phys. Rev., 106, 874(1957).

    [46] J. Schilling. Uniaxial metallo-dielectric metamaterials with scalar positive permeability. Phys. Rev. E, 74, 46618(2006).

    [47] J. Yao et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 321, 930(2008).

    [48] T. Xu et al. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 497, 470(2013).

    [49] L. Ferrari et al. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, 1(2015).

    [50] H. J. Lezec, J. A. Dionne, H. A. Atwater. Negative refraction at visible frequencies. Science, 316, 430(2007).

    [51] H. S. Eisenberg et al. Diffraction management. Phys. Rev. Lett., 85, 1863(2000).

    [52] T. Pertsch et al. Anomalous refraction and diffraction in discrete optical systems. Phys. Rev. Lett., 88, 093901(2002).

    [53] D. N. Christodoulides, F. Lederer, Y. Silberberg. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 424, 817(2003).

    [54] E. Verhagen et al. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides. Phys. Rev. Lett., 105, 223901(2010).

    [55] Y. Liu, X. Zhang. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett., 103, 141101(2013).

    [56] B. Xu, T. Li, S. Zhu. Simulation of massless Dirac dynamics in plasmonic waveguide arrays. Opt. Express, 26, 13416(2018).

    [57] L. Verslegers et al. Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys. Rev. Lett., 103, 33902(2009).

    [58] X. Fan, G. P. Wang. Nanoscale metal waveguide arrays as plasmon lenses. Opt. Lett., 31, 1322(2006).

    [59] Z. Kang, G. P. Wang. Object distance-independent near-field subwavelength imaging of metal waveguide arrays. J. Opt. Soc. Am. B, 25, 1984(2008).

    [60] J. M. Zeuner et al. Optical analogues for massless Dirac particles and conical diffraction in one dimension. Phys. Rev. Lett., 109, 023602(2012).

    [61] W. Song et al. Subwavelength self-imaging in cascaded waveguide arrays. Adv. Photonics, 2, 036001(2020).

    [62] W. Song et al. Dispersionless coupling among optical waveguides by artificial gauge field. Phys. Rev. Lett., 129, 53901(2022).

    [63] Y. Liu et al. All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials. Light Sci. Appl., 11, 276(2022).

    [64] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780(2006).

    [65] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977(2006).

    [66] R. Liu et al. Broadband ground-plane cloak. Science, 323, 366(2009).

    [67] Y. Lai et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett., 102, 093901(2009).

    [68] Y. Lai et al. Illusion optics: the optical transformation of an object into another object. Phys. Rev. Lett., 102, 253902(2009).

    [69] D. A. Genov, S. Zhang, X. Zhang. Mimicking celestial mechanics in metamaterials. Nat. Phys., 5, 687(2009).

    [70] C. Sheng et al. Trapping light by mimicking gravitational lensing. Nat. Photonics, 7, 902(2013).

    [71] C. Sheng et al. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun., 7, 10747(2016).

    [72] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [73] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041(2018).

    [74] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev., 11, 1600295(2017).

    [75] S.-J. Kim et al. Dielectric metalens: properties and three-dimensional imaging applications. Sensors, 21, 4584(2021).

    [76] W. T. Chen, F. Capasso. Will flat optics appear in everyday life anytime soon?. Appl. Phys. Lett., 118, 100503(2021).

    [77] D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [78] Y.-W. Huang et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett., 15, 3122(2015).

    [79] Y. Yao et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett., 14, 6526(2014).

    [80] J. Yu et al. Dielectric super-absorbing metasurfaces via PT symmetry breaking. Optica, 8, 1290(2021).

    [81] P.-Y. Chen, C. Argyropoulos, A. Alù. Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys. Rev. Lett., 111, 233001(2013).

    [82] K. Huang et al. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater., 30, 1704556(2018).

    [83] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604(2020).

    [84] M. K. Chen et al. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater., 9, 2001414(2021).

    [85] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426(2012).

    [86] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223(2012).

    [87] M. Decker et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813(2015).

    [88] A. Arbabi et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [89] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937(2015).

    [90] L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750(2012).

    [91] W. Zhu et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater., 27, 4739(2015).

    [92] N. K. Grady et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304(2013).

    [93] W. Liu, Y. S. Kivshar. Generalized Kerker effects in nanophotonics and meta-optics. Opt. Express, 26, 13085(2018).

    [94] A. Hassanfiroozi et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces. Laser Photon. Rev., 16, 2100525(2022).

    [95] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401(1987).

    [96] N. Shitrit et al. Optical spin Hall effects in plasmonic chains. Nano Lett., 11, 2038(2011).

    [97] S. Liu et al. Photonic spin Hall effect: fundamentals and emergent applications. Opto-Electron. Adv., 1, 220007(2022).

    [98] L. Cong et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry. Adv. Opt. Mater., 3, 1176(2015).

    [99] C. Chen et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett., 21, 1815(2021).

    [100] Z. Li et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano, 11, 9382(2017).

    [101] J. P. B. Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [102] F. Aieta et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932(2012).

    [103] A. Maréchal. Mechanical integrator for studying the distribution of light in the optical image. J. Opt. Soc. Am., 37, 403_1(1947).

    [104] F. Aieta et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express, 21, 31530(2013).

    [105] S. M. Kamali et al. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev., 10, 1002(2016).

    [106] X. Chen et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [107] J. Chen et al. A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation. Opt. Express, 26, 34919(2018).

    [108] C. Zhang et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl., 9, 55(2020).

    [109] Q. Fan et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Opt. Lett., 43, 6005(2018).

    [110] B. H. Chen et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett., 17, 6345(2017).

    [111] A. Wang, Z. Chen, Y. Dan. Planar metalenses in the mid-infrared. AIP Adv., 9, 85327(2019).

    [112] L. Guo et al. Design of aluminum nitride metalens for broadband ultraviolet incidence routing. Nanophotonics, 8, 171(2019).

    [113] M. Rossi, R. E. Kunz, H.-P. Herzig. Refractive and diffractive properties of planar micro-optical elements. Appl. Opt., 34, 5996(1995).

    [114] O. Avayu et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [115] D. Lin et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett., 16, 7671(2016).

    [116] E. Arbabi et al. Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett., 18, 4943(2018).

    [117] M. Khorasaninejad et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett., 15, 5358(2015).

    [118] H. Li et al. Bandpass-filter-integrated multiwavelength achromatic metalens. Photonics Res., 9, 1384(2021).

    [119] M. Khorasaninejad et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819(2017).

    [120] E. Arbabi et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625(2017).

    [121] Z.-B. Fan et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 67(2019).

    [122] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [123] A. McClung, M. Mansouree, A. Arbabi. At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces. Light Sci. Appl., 9, 93(2020).

    [124] A. A. Fathnan, D. A. Powell. Bandwidth and size limits of achromatic printed-circuit metasurfaces. Opt. Express, 26, 29440(2018).

    [125] R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain. Slow-light optical buffers: capabilities and fundamental limitations. J. Light. Technol., 23, 4046(2005).

    [126] Y. Wang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [127] F. Balli et al. A hybrid achromatic metalens. Nat. Commun., 11, 3892(2020).

    [128] M. Li et al. Dual-layer achromatic metalens design with an effective Abbe number. Opt. Express, 28, 26041(2020).

    [129] M. Mansouree et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica, 7, 77(2020).

    [130] F. Balli et al. An ultrabroadband 3D achromatic metalens. Nanophotonics, 10, 1259(2021).

    [131] Y. Wang, Q. Fan, T. Xu. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron. Adv., 4, 200008(2021).

    [132] C. Chen et al. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019).

    [133] A. Kalvach, Z. Szabó. Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B, 33, A66(2016).

    [134] X. Luo et al. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11, 1(2022).

    [135] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902(2017).

    [136] Z. Lin et al. Topology-optimized multilayered metaoptics. Phys. Rev. Appl., 9, 44030(2018).

    [137] C. Hao et al. Single-layer aberration-compensated flat lens for robust wide-angle imaging. Laser Photon. Rev., 14, 2000017(2020).

    [138] A. Martins et al. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073(2020).

    [139] M. Y. Shalaginov et al. Single-element diffraction-limited fisheye metalens. Nano Lett., 20, 7429(2020).

    [140] F. Zhang et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater., 33, 2008157(2021).

    [141] E. Lassalle et al. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection. ACS Photonics, 8, 1457(2021).

    [142] B. Xu et al. Metalens-integrated compact imaging devices for wide-field microscopy. Adv. Photonics, 2, 066004(2020).

    [143] J. Chen et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431(2022).

    [144] R. Paniagua-Dominguez et al. A metalens with a near-unity numerical aperture. Nano Lett., 18, 2124(2018).

    [145] S. J. Byrnes et al. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express, 24, 5110(2016).

    [146] M. Kang et al. Efficient focusing with large numerical aperture using a hybrid metalens. Phys. Rev. Appl., 13, 44016(2020).

    [147] A. Arbabi et al. Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique. Sci. Rep., 10, 7214(2020).

    [148] Y. Bao et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv. Funct. Mater., 28, 1805306(2018).

    [149] S. M. Kamali et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X, 7, 41056(2017).

    [150] X. Zhang et al. Controlling angular dispersions in optical metasurfaces. Light Sci. Appl., 9, 76(2020).

    [151] E. T. F. Rogers, N. I. Zheludev. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. J. Opt., 15, 94008(2013).

    [152] D. Tang et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photon. Rev., 9, 713(2015).

    [153] G. H. Yuan, E. T. F. Rogers, N. I. Zheludev. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci. Appl., 6, e17036(2017).

    [154] Z. Li et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photon. Rev., 12, 1800064(2018).

    [155] D. Tang, L. Chen, J. Liu. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing. Opt. Express, 27, 12308(2019).

    [156] F. Qin et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater., 29, 1602721(2017).

    [157] S. D. Campbell et al. Review of numerical optimization techniques for meta-device design. Opt. Mater. Express, 9, 1842(2019).

    [158] W. Li et al. Topology optimization of photonic and phononic crystals and metamaterials: a review. Adv. Theory Simul., 2, 1900017(2019).

    [159] C.-H. Lin et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization. Nano Lett., 21, 4981(2021).

    [160] M. P. Bendsoe, O. Sigmund. Topology Optimization: Theory, Methods, and Applications(2003).

    [161] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 5, 308(2011).

    [162] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 48(2019).

    [163] E. Tseng et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    [164] Q. Fan et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat. Commun., 13, 2130(2022).

    [165] Y. Fan et al. Experimental demonstration of genetic algorithm based metalens design for generating side-lobe-suppressed, large depth-of-focus light sheet. Laser Photon. Rev., 16, 2100425(2022).

    [166] M. K. Chen et al. A meta-device for intelligent depth perception. Adv. Mater., 2107465(2022).

    [167] M. K. Chen et al. Artificial intelligence in meta-optics. Chem. Rev., 122, 15356(2022).

    [168] P. Su et al. Large-area optical metasurface fabrication using nanostencil lithography. Opt. Lett., 46, 2324(2021).

    [169] S. W. D. Lim, M. L. Meretska, F. Capasso. A high aspect ratio inverse-designed holey metalens. Nano Lett., 21, 8642(2021).

    [170] F. Zhao et al. Metalens-assisted system for underwater imaging. Laser Photon. Rev., 15, 2100097(2021).

    [171] M. K. Chen et al. Meta-lens in the sky. IEEE Access, 10, 46552(2022).

    [172] T. W. Hughes et al. A perspective on the pathway toward full wave simulation of large area metalenses. Appl. Phys. Lett., 119, 150502(2021).

    [173] A. She et al. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express, 26, 1573(2018).

    [174] J.-S. Park et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett., 19, 8673(2019).

    [175] T. Hu et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics, 9, 823(2020).

    [176] C. A. Dirdal et al. Towards high-throughput large-area metalens fabrication using UV-nanoimprint lithography and Bosch deep reactive ion etching. Opt. Express, 28, 15542(2020).

    [177] G. Yoon et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698(2021).

    [178] V. J. Einck et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics, 8, 2400(2021).

    [179] D. C. O’Shea et al. Diffractive Optics: Design, Fabrication, and Test, 62(2004).

    [180] L. Hazra. Diffractive optical elements: past, present, and future. Proc. SPIE, 3729, 198(1999).

    [181] Y. Peng et al. Learned large field-of-view imaging with thin-plate optics. ACM Trans. Graph., 38, 211(2019).

    [182] G. J. Swanson. The theory and design of multi-level diffractive optical elements(1989).

    [183] D. W. Sweeney, G. E. Sommargren. Harmonic diffractive lenses. Appl. Opt., 34, 2469(1995).

    [184] S. Sinzinger, M. Testorf. Transition between diffractive and refractive micro-optical components. Appl. Opt., 34, 5970(1995).

    [185] P. Wang, N. Mohammad, R. Menon. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep., 6, 21545(2016).

    [186] L. L. Doskolovich et al. Design of diffractive lenses operating at several wavelengths. Opt. Express, 28, 11705(2020).

    [187] M. Meem et al. Inverse-designed achromatic flat lens enabling imaging across the visible and near-infrared with diameter > 3 mm and NA = 0.3. Appl. Phys. Lett., 117, 041101(2020).

    [188] X. Xiao et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light Sci. Appl., 11, 323(2022).

    [189] S. Banerji et al. Extreme-depth-of-focus imaging with a flat lens. Optica, 7, 214(2020).

    [190] Y. Peng et al. The diffractive achromat full spectrum computational imaging with diffractive optics. ACM Trans. Graph., 35, 31(2016).

    [191] B. K. Yildırım, H. Kurt, M. Turduev. Ultra-compact, high-numerical-aperture achromatic multilevel diffractive lens via metaheuristic approach. Photonics Res., 9, 2095(2021).

    [192] R. Hooke, T. A. Jeeves. “Direct search” solution of numerical and statistical problems. J. ACM, 8, 212(1961).

    [193] M. A. Seldowitz, J. P. Allebach, D. W. Sweeney. Synthesis of digital holograms by direct binary search. Appl. Opt., 26, 2788(1987).

    [194] R. L. Haupt, D. H. Werner. Genetic Algorithms in Electromagnetics(2007).

    [195] J. Engelberg, U. Levy. Standardizing flat lens characterization. Nat. Photonics, 16, 171(2022).

    [196] N. Mohammad et al. Broadband imaging with one planar diffractive lens. Sci. Rep., 8, 2799(2018).

    [197] M. Meem, A. Majumder, R. Menon. Full-color video and still imaging using two flat lenses. Opt. Express, 26, 26866(2018).

    [198] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227(2019).

    [199] A. Ndao et al. Octave bandwidth photonic fishnet-achromatic-metalens. Nat. Commun., 11, 3205(2020).

    [200] T. Sun et al. Polarization-insensitive achromatic metalens based on computational wavefront coding. Opt. Express, 29, 31902(2021).

    [201] M. Meem et al. Imaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lens. Opt. Express, 29, 20715(2021).

    [202] F. Zhou et al. Vector light field display based on an intertwined flat lens with large depth of focus. Optica, 9, 288(2022).

    [203] X. Luo et al. Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics, 10, 757(2018).

    [204] L. Liu et al. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes. Sci. Rep., 6, 30450(2016).

    [205] X. Luo. Plasmonic metalens for nanofabrication. Natl. Sci. Rev., 5, 137(2018).

    [206] H.-S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 16, 2818(2016).

    [207] K. Iwami et al. Demonstration of focal length tuning by rotational varifocal moiré metalens in an IR-A wavelength. Opt. Express, 28, 35602(2020).

    [208] Y. Luo et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett., 21, 5133(2021).

    [209] S. Colburn, A. Zhan, A. Majumdar. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 5, 825(2018).

    [210] E. Arbabi et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [211] M. Y. Shalaginov et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [212] R. Fu et al. Reconfigurable step-zoom metalens without optical and mechanical compensations. Opt. Express, 27, 12221(2019).

    [213] L. Yu et al. Spin angular momentum controlled multifunctional all-dielectric metasurface doublet. Laser Photon. Rev., 14, 1900324(2020).

    [214] M. K. Chen et al. Edge detection with meta-lens: from one dimension to three dimensions. Nanophotonics, 10, 3709(2021).

    [215] L. Li et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science, 368, 1487(2020).

    [216] M. L. Tseng et al. Vacuum ultraviolet nonlinear metalens. Sci. Adv., 8, eabn5644(2022).

    [217] X. Hua et al. Ultra-compact snapshot spectral light-field imaging. Nat. Commun., 13, 2732(2022).

    [218] M. Park et al. Virtual-moving metalens array enabling light-field imaging with enhanced resolution. Adv. Opt. Mater., 8, 2000820(2020).

    [219] Q. Guo et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl. Acad. Sci., 116, 22959(2019).

    [220] C. Jin et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging. Adv. Photonics, 1, 036001(2019).

    [221] C. Chen et al. Highly efficient metasurface quarter-wave plate with wave front engineering. Adv. Photonics Res., 2, 2000154(2021).

    [222] R. M. A. Azzam, N. M. Bashara, S. S. Ballard. Ellipsometry and polarized light. Phys. Today, 31, 72(1978).

    [223] M. Khorasaninejad et al. Multispectral chiral imaging with a metalens. Nano Lett., 16, 4595(2016).

    [224] Z. Yang et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun., 9, 4607(2018).

    [225] E. Arbabi et al. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics, 5, 3132(2018).

    [226] N. A. Rubin et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, eaax1839(2019).

    [227] X. Ye et al. Chip-scale metalens microscope for wide-field and depth-of-field imaging. Adv. Photonics, 4, 046006(2022).

    [228] H. Pahlevaninezhad et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540(2018).

    [229] Y. Liu et al. Meta-objective with sub-micrometer resolution for microendoscopes. Photonics Res., 9, 106(2021).

    [230] M. Pahlevaninezhad et al. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nat. Photonics, 16, 203(2022).

    [231] P. Huo et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 20, 2791(2020).

    [232] J. Zhou et al. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev., 8, nwaa176(2021).

    [233] Y. Kim et al. Spiral metalens for phase contrast imaging. Adv. Funct. Mater., 32, 2106050(2022).

    [234] J. Zhou et al. Nonlinear computational edge detection metalens. Adv. Funct. Mater., 32, 2204734(2022).

    [235] H. Kwon et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 14, 109(2020).

    [236] C. Guo, H. Wang, S. Fan. Squeeze free space with nonlocal flat optics. Optica, 7, 1133(2020).

    [237] O. Reshef et al. An optic to replace space and its application towards ultra-thin imaging systems. Nat. Commun., 12, 3512(2021).

    [238] K. Shastri et al. To what extent can space be compressed? Bandwidth limits of spaceplates. Optica, 9, 738(2022).

    [239] C. Chen et al. Bifacial-metasurface-enabled pancake metalens with polarized space folding. Optica, 9, 1314(2022).

    [240] J. Hua et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex. Light Sci. Appl., 10, 213(2021).

    [241] J. Hua, W. Qiao, L. Chen. Recent advances in planar optics-based glasses-free 3D displays. Front. Nanotechnol., 4, 829011(2022).

    [242] G.-Y. Lee et al. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [243] S.-W. Nam et al. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens. Opt. Express, 28, 30836(2020).

    [244] Z. Li et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv., 7, eabe4458(2021).

    [245] H. Kwon et al. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 121, 173004(2018).

    [246] F. Monticone, C. A. Valagiannopoulos, A. Alù. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X, 6, 041018(2016).

    [247] A. C. Overvig, S. C. Malek, N. Yu. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett., 125, 017402(2020).

    [248] C. J. Chang-Hasnain, W. Yang. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics, 4, 379(2012).

    [249] M. F. Limonov et al. Fano resonances in photonics. Nat. Photonics, 11, 543(2017).

    [250] C. W. Hsu et al. Observation of trapped light within the radiation continuum. Nature, 499, 188(2013).

    [251] K. Koshelev et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [252] S. C. Malek et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl., 11, 246(2022).

    [253] D. Lee et al. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Adv., 2, 605(2020).

    [254] M. Pan et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci. Appl., 11, 195(2022).

    [255] Y. He, B. Song, J. Tang. Optical metalenses: fundamentals, dispersion manipulation, and applications. Front. Optoelectron., 15, 24(2022).

    [256] S. Ijaz et al. The dawn of metadevices: from contemporary designs to exotic applications. Adv. Devices Instrum., 2022, 9861078(2022).

    [257] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788(2004).

    [258] S. A. Ramakrishna. Physics of negative refractive index materials. Reports Prog. Phys., 68, 449(2005).

    [259] C. M. Soukoulis, S. Linden, M. Wegener. Negative refractive index at optical wavelengths. Science, 315, 47(2007).

    [260] C. Ma, R. Aguinaldo, Z. Liu. Advances in the hyperlens. Chinese Sci. Bull., 55, 2618(2010).

    [261] W. Zang et al. Chromatic dispersion manipulation based on metalenses. Adv. Mater., 32, 1904935(2020).

    [262] W. Li, J. Qi, A. Sihvola. Meta-imaging: from non-computational to computational. Adv. Opt. Mater., 8, 2001000(2020).

    [263] J. Chen et al. Metamaterials: from fundamental physics to intelligent design. Interdiscip. Mater., 2, 12049(2022).

    [264] Q. Ma et al. Information metasurfaces and intelligent metasurfaces. Photon. Insights, 1, R01(2022).

    [265] Y. Guo et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photon. Insights, 1, R03(2022).

    [266] C. Wang et al. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: a review. Micromachines, 7, 118(2016).

    [267] Z. Li et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun., 13, 2409(2022).

    [268] N. Wang et al. Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2, 22(2021).

    [269] J. Jiang, M. Chen, J. A. Fan. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater., 6, 679(2021).

    [270] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659(2018).

    [271] M. M. R. Elsawy et al. Numerical optimization methods for metasurfaces. Laser Photon. Rev., 14, 1900445(2020).

    [272] C. Zuo et al. Deep learning in optical metrology: a review. Light Sci. Appl., 11, 39(2022).

    [273] V. Boominathan et al. Recent advances in lensless imaging. Optica, 9, 1(2022).

    Tao Li, Chen Chen, Xingjian Xiao, Ji Chen, Shanshan Hu, Shining Zhu. Revolutionary meta-imaging: from superlens to metalens[J]. Photonics Insights, 2023, 2(1): R01
    Download Citation