• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 5, 1330008 (2014)
Riccardo Cicchi1、2、* and Francesco Saverio Pavone1、2、3、4
Author Affiliations
  • 1National Institute of Optics National Research Council (INO-CNR) Largo E. Fermi 6, 50125 Florence, Italy
  • 2European Laboratory for Nonlinear Spectroscopy (LENS) University of Florence, Sesto Fiorentino, Italy
  • 3Department of Physics University of Florence, Sesto Fiorentino, Italy
  • 4International Center of Computational Neurophotonics (ICON) Florence, Italy
  • show less
    DOI: 10.1142/s1793545813300085 Cite this Article
    Riccardo Cicchi, Francesco Saverio Pavone. Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1330008 Copy Citation Text show less
    References

    [1] W. R. Zipfel, R. M. Williams, W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369–1377 (2003).

    [2] F. Helmchen, W. Denk, "Deep tissue two-photon microscopy," Nat. Methods. 2, 932–940 (2005).

    [3] V. E. Centonze, J. G. White, "Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging," Biophys. J. 75, 2015–2022 (1998).

    [4] M. Goppert-Mayer, "Uber elementarekte mit zwei Quantensprunger," Ann. Phys. 9, 273 (1931).

    [5] W. Denk, H. J. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscope," Science 248, 73–76 (1990)

    [6] R. M. Williams, W. R. Zipfel, W. W. Webb, "Multiphoton microscopy in biological research," Curr. Opin. Chem. Biol. 5, 603–608 (2001).

    [7] K. K€onig, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83–104 (2000).

    [8] S. Huang, A. A. Heikal, W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811–2825 (2002).

    [9] A. Volkmer, V. Subramaniam, D. J. S. Birch, T. M. Jovin, "One and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins," Biophys. J. 78, 1589–1598 (2000).

    [10] C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, W. W. Webb, "Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy," Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).

    [11] M. Rubart, E. Wang, K. W. Dunn, L. J. Field, "Two-photon molecular excitation imaging of Ca2t transients in Langendorff-perfused mouse hearts," Am. J. Physiol. Cell Physiol. 284, C1654– C1668 (2003).

    [12] M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, "Two-photon microscopy in brain tissue: Parameters influencing the imaging depth," J. Neurosci. Methods 111, 29–37 (2001).

    [13] A. Zoumi, A. T. Yeh, B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

    [14] W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, "Live tissue intrinsic emission microscopy using multiphotonexcited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

    [15] B. R. Masters, P. T. C. So, E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405–2412 (1997).

    [16] B. R. Masters, P. T. C. So, E. Gratton, "Optical biopsy of in vivo human skin: Multi-photon excitation microscopy," Lasers Med. Sci. 13, 196–203 (1998).

    [17] B. R. Masters, P. T. C. So, "Confocal microscopy and multi-photon excitation microscopy of human skin in vivo," Opt. Express 8, 2–9 (2001).

    [18] K. Konig, I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432–439 (2003).

    [19] F. Helmchen, W. Denk, "Deep tissue two-photon microscopy," Nat. Methods. 2(12), 932–940 (2005).

    [20] K. Svoboda, R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron 50(6), 823–839 (2006).

    [21] K. Konig, "Clinical multiphoton tomography," J. Biophotonics 1(1), 13–23 (2008).

    [22] M. J. Koehler, K. K€onig, P. Elsner, R. Buckle, M. Kaatz, "In vivo assessment of human skin aging by multiphoton laser scanning tomography," Opt. Lett. 31, 2879–2881 (2006).

    [23] E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. Konig, M. Kaatz, "Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis," Exp. Dermatol. 18(6), 509–515 (2009).

    [24] J. N. Gannaway, C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quant. Elect. 10, 435–439 (1978).

    [25] C. J. R. Sheppard, R. Kompfner, J. Gannaway, D. Walsh, "Scanning harmonic optical microscope," IEEE J. Quantum Electron. 13E, 100D (1977).

    [26] R. Cicchi, L. Sacconi, F. Vanzi, F. S. Pavone, "How to build an SHG apparatus, in Second- Harmonic Generation Imaging," F. S. Pavone, P. J. Campagnola, Eds., CRC Press (2013).

    [27] S. Fine, W. P. Hansen, "Optical second harmonic generation in biological systems," Appl. Opt. 10, 2350–2353 (1971).

    [28] W. A. Mohler, A. C. Millard, P. J. Campagnola, "Second harmonic generation imaging of endogenous structural proteins," Methods 29, 97–109 (2003).

    [29] S. Roth, I. Freund, "Second harmonic generation in collagen," J. Chem. Phys. 70, 1637–1643 (1979).

    [30] I. Freund, M. Deutsch, A. Sprecher, "Optical second-harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693–712 (1986).

    [31] R. Cicchi, N. Vogler, D. Kapsokalyvas, B. Dietzek, J. Popp, F. S. Pavone, "From molecular structure to tissue architecture: Collagen organization probed by SHG microscopy," J. Biophoton. 6, 129–142 (2012).

    [32] M. Both, M. Vogel, O. Friedrich, F. Von Wegner, T. Kunsting, R. H. A. Fink, D. Uttenweiler, "Second harmonic imaging of intrinsic signals in muscle fiber in situ," J. Biomed. Opt. 87, 882–892 (2004).

    [33] T. Boulesteix, E. Beaurepaire, M. P. Sauviat, M. C. Schanne-Klein, "Second-harmonic microscopy of unstained living cardiac myocytes: Measurements of sarcomere length with 20 nm accuracy," Opt. Lett. 29, 2031–2033 (2004).

    [34] M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, M. J. Schnitzer, "Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans," Nat. Lett. 454, 784–788 (2008).

    [35] V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, F. S. Pavone, "Probing myosin structural conformation in vivo by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. USA 107, 7763–7768 (2010).

    [36] S. V. Plotnikov, A. C. Millard, P. J. Campagnola, W. A. Mohler, "Characterization of the myosin- based source for second-harmonic generation from muscle sarcomeres," Biophys. J. 90, 693–703 (2006).

    [37] F. Vanzi, L. Sacconi, R. Cicchi, F. S. Pavone, "Protein conformation and molecular order probed by second-harmonic generation microscopy," J. Biomed. Opt. 17(6), 060901 (2012).

    [38] D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).

    [39] R. Cicchi, N. Vogler, D. Kapsokalyvas, B. Dietzek, J. Popp, F. S. Pavone, "From molecular structure to tissue architecture: Collagen organization probed by SHG microscopy," J. Biophoton. 6, 129– 142 (2013).

    [40] P. J. Campagnola, M. D. Wei, A. Lewis, L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341–3349 (1999).

    [41] T. Pons, L. Moreaux, O. Mongin, M. Blanchard- Desce, J. Mertz, "Mechanisms of membrane potential sensing with second-harmonic generation microscopy," J. Biomed. Opt. 8, 428–431 (2003).

    [42] A. Zoumi, A. Yeh, B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

    [43] P. J. Campagnola, L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356–1360 (2003).

    [44] J. Mertz, L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325– 330 (2001).

    [45] L. Moreaux, O. Sandre, S. Charpak, M. Blanchard- Desce, J. Mertz, "Coherent scattering in multiharmonic light microscopy," Biophys. J. 80, 1568–1574 (2001).

    [46] L. Moreaux, O. Sandre, J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685–1694 (2000).

    [47] L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320–322 (2000).

    [48] P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, "Threedimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys J. 81, 493– 508 (2002).

    [49] Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323–1325 (1997).

    [50] G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, M. D. Gorrell, "Three dimensional imaging of collagen using second harmonic generation," J. Struct. Biol. 141, 53–62 (2003).

    [51] M. Han, G. Giese, J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express. 13, 5791–5797 (2005).

    [52] A. Yeh, N. Nassif, A. Zoumi, B. J. Tromberg, "Selective corneal imaging using combined second harmonic generation and two-photon excited fluorescence," Opt. Lett. 27, 2082–2084 (2002).

    [53] P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7(2), 205–214 (2002).

    [54] T. Theodossiou, C. Thrasivoulou, C. Ekwobi, D. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections," Biophys J. 91, 4665–4677 (2006).

    [55] A. Zoumi, X. Lu, G. S. Kassab, B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2778–2786 (2004).

    [56] P. Stoller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, "Polarization-modulated second harmonic generation in collagen," Biophys. J. 82, 3330–3342 (2002).

    [57] T. Yasui, Y. Tohno, T. Araki, "Characterization of collagen orientation in human dermis by twodimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259–264 (2004).

    [58] P. J. Su, W. L. Chen, J. B. Hong, T. H. Li, R. Wu, C. K. Chou, S. J. Chen, C. Hu, S. J. Lin, C. Y. Dong, "Discrimination of collagen in normal and pathological skin dermis through secondorder susceptibility microscopy," Opt. Express 17, 11161–11171 (2009).

    [59] R. Cicchi, S. Sestini, V. De Giorgi, D. Massi, T. Lotti, F. S. Pavone, "Nonlinear laser imaging of skin lesions," Journal of Biophotonics 1(1), 62–73 (2008).

    [60] A. Pena, D. Fagot, C. Olive, J. F. Michelet, J. B. Galey, F. Leroy, E. Beaurepaire, J. L. Martin, A. Colonna, M. C. Schanne-Klein, "Multiphoton microscopy of engineered dermal substitutes: Assessment of 3-D collagen matrix remodeling induced by fibroblast contraction," J. Biomed. Opt. 15, 056018 (2010).

    [61] R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, F. S. Pavone, "Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy," J. Biophoton. 3, 34–43 (2010).

    [62] J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, H. Zeng, "Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease," J. Biomed. Opt. 16, 051305 (2011).

    [63] A. Medyukhina, N. Vogler, I. Latka, S. Kemper, M. B€ohm, B. Dietzek, J. Popp, "Automated classifi- cation of healthy and keloidal collagen patterns based on processing of SHG images of human skin," J. Biophoton. 4, 627–636 (2011).

    [64] M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, M. C. Schanne- Klein, "Second harmonic imaging and scoring of collagen in fibrotic tissues," Opt. Express 15, 4054– 4065 (2007).

    [65] T. Guilbert, C. Odin, Y. Le Grand, L. Gailhouste, B. Turlin, F. Ezan, Y. Desille, G. Baffet, D. Guyader, "A robust collagen scoring method for human liver fibrosis by second harmonic microscopy," Opt. Express 18, 25794–25807 (2010).

    [66] L. Gailhouste, Y. Grand, C. Odin, D. Guyader, B. Turlin, F. Ezan, Y. Desille, T. Guilbert, A. Bessard, C. Fremin, N. Theret, G. Baffet, "Fibrillar collagen scoring by second harmonic microscopy: A new tool in the assessment of liver fibrosis," J. Hepathol. 52, 398–406 (2010).

    [67] S. J. Lin, C. Y. Hsiao, Y. Sun, W. Lo, W. C. Lin, G. J. Jan, S. H. Jee, C. Y. Dong, "Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy," Opt. Lett. 30, 622–624 (2005).

    [68] P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, R. Pini, "Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging," Opt. Express 17(6), 4868–4878 (2009).

    [69] T. Theodossiou, G. S. Rapti, V. Hovhannisyan, E. Georgiou, K. Politopoulos, D. Yova, "Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence," Lasers Med Sci. 17, 34–41 (2002).

    [70] W. Lo, Y. L. Chang, J. S. Liu, C. M. Hseuh, V. Hovhannisyan, S. J. Chen, H. Y. Tan, C. Y. Dong, "Multimodal, multiphoton microscopy and image correlation analysis for characterizing corneal thermal damage," J. Biomed. Opt. 14, 054003 (2009).

    [71] Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, C. Y. Dong, "Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging," Biophys. J. 91, 2620–2625 (2006).

    [72] Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA 96, 10854–10856 (1999).

    [73] E. Brown, T. McKee, E. DiTomaso, A. Pluen, B. Seed, Y. Boucher, R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9, 796–800 (2003).

    [74] S. J. Lin, S. H. Jee, C. J. Kuo, R. J. Wu, W. C. Lin, J. S. Chen, Y. H. Liao, C. J. Hsu, T. F. Tsai, Y. F. Chen, C. Y. Dong, "Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging," Opt. Lett. 31, 2756– 2758 (2006).

    [75] P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, P. J. Keely, "Collagen reorganization at the tumor-stromal interface facilitates local invasion," BMC Med. 4(1), 38–53 (2006).

    [76] X. Han, R. M. Burke, M. L. Zettel, P. Tang, E. B. Brown, "Second harmonic properties of tumor collagen: Determining the structural relationship between reactive stroma and healthy stroma," Opt. Express. 16, 1846–1859 (2008).

    [77] A. M. Raja, S. Xu, W. Sun, J. Zhou, D. C. S. Tai, C. S. Chen, J. C. Rajapakse, P. T. C. So, H. Yu, "Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy," J. Biomed. Opt. 15, 056016 (2010).

    [78] O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, "Alteration of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy," BMC Cancer 10, 94 (2010).

    [79] S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, W. A. Mohler, "Measurement of muscle disease by quantitative second-harmonic generation imaging," J. Biomed. Opt. 13, 044018 (2008).

    [80] F. Vanzi, L. Sacconi, R. Cicchi, F. S. Pavone, "Molecular structure and order with secondharmonic generation microscopy", in Second- Harmonic Generation Imaging, F. S. Pavone and P. J. Campagnola, Eds., 2013, CRC Press, Chap. 4 (2013).

    [81] O. Nadiarnykh, S. Plotnikov, W. A. Mohler, I. Kalajzic, D. Redford-Badwal, P. J. Campagnola, "Second harmonic generation imaging microscopy studies of osteogenesis imperfecta," J. Biomed. Opt. 12, 051805 (2007).

    [82] R. LaComb, O. Nadiarnykh, P. J. Campagnola, "Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation," Biophys. J. 94, 4504– 4514 (2008).

    [83] K. M. Reiser, C. Bratton, D. R. Yankelevich, A. Knoesen, I. Rocha-Mendoza, J. Lotz, "Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: Comparison with morphometric analysis," J. Biomed. Opt. 12, 064019 (2007).

    [84] N. Tiwari, S. Chabra, S. Mehdi, P. Sweet, T. B. Krasieva, R. Pool, B. Andrews, G. M. Peavy, "Imaging of normal and pathologic joint synovium using nonlinear optical microscopy as a potential diagnostic tool," J. Biomed. Opt. 15(056001), 056001 (2010).

    [85] S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 30, 2275–2277 (2005).

    [86] M. J. Koehler, S. Hahn, A. Preller, P. Elsner, M. Ziemer, A. Bauer, K. K€onig, R. Bückle, J. W. Fluhr, M. Kaatz, "Morphological skin ageing criteria by multiphoton laser scanning tomography: Non-invasive in-vivo scoring of the dermal fibre network," Exp. Dermatol. 17, 519–523 (2008).

    [87] M. J. Koehler, A. Preller, N. Kindler, P. Elsner, K. Konig, R. Buckle, M. Kaatz, "Intrinsic, solar and sunbed-induced skin aging measured in vivo by multiphoton laser tomography and biophysical methods," Skin Res. Tech. 15, 357–363 (2009).

    [88] J. Paoli, M. Smedh, A.-M. Wennberg, M. B. Ericson, "Multiphoton laser scanning microscopy on non-melanoma skin cancer: Morphologic features for future non-invasive diagnostics," J. Invest. Dermatol. 128, 1248–1255 (2008).

    [89] C. Krafft, B. Dietzek, J. Popp, "Raman and CARS microspectroscopy of cells and tissues," Analyst 134(6), 1046–1057 (2009).

    [90] M. Muller, A. Zumbusch, "Coherent anti-stokes Raman scattering microscopy," Chemphyschem 8(15), 2156–2170 (2007).

    [91] J. X. Cheng, Y. K. Jia, G. F. Zheng, X. S. Xie, "Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology," Biophys.J. 83(1), 502–509 (2002).

    [92] A. X. Cheng, G. F. Zheng, S. N. Xie, "Real-time vibrational imaging of apoptosis with laser-scanning coherent anti-Stokes Raman scattering microscopy," Biophys. J. 82(1), 175a–175a (2002).

    [93] C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102(46), 16807–16812 (2005).

    [94] H. W. Wang, T. T. Le, J. X. Cheng, "Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope," Opt. Commun. 281, 1813–1822 (2008).

    [95] X. L. Nan, J. X. Cheng, X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy," J. Lipid Res. 44, 2202–2208 (2003).

    [96] E. O. Potma, X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642–650 (2003).

    [97] N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Boehm, B. Dietzek, J. Popp, "Towards multimodal nonlinear optical tomography — experimental methodology," Laser Phys. Lett. 8, 617–624 (2011).

    [98] T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, J. Popp, "Nonlinear microscopy, infrared, Raman microspectroscopy for brain tumor analysis," J. Biomed. Opt. 16, 021113 (2011).

    [99] C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, G. S. Young, "Chemically-selective imaging of brain structures with CARS microscopy," Opt. Express. 15, 12076–12087 (2007).

    [100] C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).

    [101] S. Begin, E. Belanger, S. Laffray, R. Vallee, D. Cote, "In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast," J. Biophoton. 2, 632–642 (2009).

    [102] C. Krafft, A. A. Ramoji, C. Bielecki, N. Vogler, T. Meyer, D. Akimov, P. Roesch, M. Schmitt, B. Dietzek, I. Petersen, A. Stallmach, J. Popp, "A comparative Raman and CARS imaging study of colon tissue," J. Biophoton. 2, 303–312 (2009).

    [103] B. C. Chen, J. Sung, S. H. Lim, "Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region," J. Phys. Chem. B 114, 16871– 16880 (2010).

    [104] L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, P. T. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J Biomed Opt. 10(2), 024016 (2005).

    [105] K. Moezardalan, J. W. Birk, M. Tadros, F. A. Forouhar, O. Nadiarnykh, J. C. Anderson, P. J. Campagnola, "Second harmonic generation (SHG) laser: Useful in the diagnosis of malignant colonicpolyps," Gastrointest. Endosc. 71, AB207 (2010).

    [106] S. Zhuo, X. Zhu, G. Wu, J. Chen, S. Xie, "Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal," J. Biomed. Opt. 16(12), 120501 (2011).

    [107] R. Cicchi, A. Sturiale, G. Nesi, D. Kapsokalyvas, G. Alemanno, F. Tonelli, F. S. Pavone, "Multiphoton morpho-functional imaging of healthy colon mucosa, adenomatous polyp and adenocarcinoma," Biomed. Opt. Express. 4, 1204– 1213 (2013).

    [108] R. Cicchi, A. Crisci, A. Cosci, G. Nesi, D. Kapsokalyvas, S. Giancane, M. Carini, F. S. Pavone, "Time- and spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ," Opt. Express 18(4), 3840–3849 (2010).

    [109] R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, F. S. Pavone, "Multidimensional non-linear laser imaging of basal cell carcinoma," Opt Express 15(16), 10135–10148 (2007).

    [110] R. Cicchi, F. S. Pavone, "Non-linear fluorescence lifetime imaging of biological tissues," Anal. Bioanal. Chem 400(9), 2687–2697 (2011).

    [111] J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, E. O. Potma, "Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second-harmonic generation microscopy," Biophys. J. 102(8), 1988–1995 (2012).

    [112] R. M. Williams, W. R. Zipfel, W. W. Webb, "Interpreting second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377–1386 (2005).

    [113] J. Mertz, L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325– 330 (2001).

    [114] R. Cicchi, C. Matthaus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, J. Popp, F. S. Pavone, "Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using nonlinear microscopy," J Biophoton. 6, doi 10.1002/ jbio.201300055 (2013).

    [115] A. Walter, S. Erdmann, T. Bocklitz, E. M. Jung, N. Vogler, D. Akimov, B. Dietzek, P. Rosch, E. Kothe, J. Popp, "Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy," Analyst 135(5), 908–917 (2010).

    [116] D. Akimov, S. Chatzipapadopoulos, T. Meyer, N. Tarcea, B. Dietzek, M. Schmitt, J. Popp, "Different contrast information obtained from CARS and nonresonant FWM images," J. Raman Spectrosc. 40(8), 941–947 (2009).

    [117] M. J. Buehler, S. Uzel, "Deformation and failure of collagenous tissues: A multi-scale study," Proc. Asme Summer Bioengineering Conf. Parts A and B, pp. 301–302 (2009).

    [118] N. Vogler, T. Meyer, D. Akimov, I. Latka, C. Krafft, N. Bendsoe, K. Svanberg, B. Dietzek, J. Popp, "Multimodal imaging to study the morphochemistry of basal cell carcinoma," J. Biophotonics 3(10-11), 728–736 (2010).

    [119] J. Hagmar, C. Brackmann, T. Gustavsson, A. Enejder, "Image analysis in nonlinear microscopy," J. Opt. Soc. Am. A-Optics Image Sci. Vis. 25(9), 2195–2206 (2008).

    [120] K. Konig, I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8(3), 432–439 (2003).

    [121] F. Koenig, J. Knittel, L. Schnieder, M. George, M. Lein, D. Schnorr, "Confocal laser scanning microscopy of urinary bladder after intravesical instillation of a fluorescent dye," Urology 62(1), 158–161 (2003).

    [122] G. A. Sonn, S. N. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, J. C. Liao, "Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy," J. Urol. 182(4), 1299–1305 (2009).

    [123] M. E. Llewellyn, R. P. Barretto, S. L. Delp, M. J. Schnitzer, "Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans," Nature 454(7205), 784–788 (2008).

    [124] D. R. Rivera, D. Kobat, C. Xu, "Miniaturized fiber raster scanner for endoscopy," Proc. SPIE, 7895, Optical Biopsy Ix (2011).

    [125] D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, C. Xu, "Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue," Proc. Natl. Acad. Sci. USA 108(43), 17598–17603 (2011).

    [126] F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, R. Wepf, "Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm," J Biomed. Opt. 13(4), 041320 (2008).

    [127] O. Nadiarnykh, G. Thomas, J. Van Voskuilen, H. J. Sterenborg, H. C. Gerritsena, "Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption," J. Biomed. Opt. 17(11), 116024 (2012).

    [128] G. Thomas, O. Nadiarnykh, J. van Voskuilen, C. L. Hoy, H. C. Gerritsen, H. J. Sterenborg, "Estimating the risk of squamous cell cancer induction in skin following nonlinear optical imaging," J. Biophotonics (2013), doi: 10.1002/jbio.201200207.

    [129] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, "In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, cellular morphology in precancerous epithelia," Proc. Natl. Acad. Sci. USA 104(49), 19494–19499 (2007).

    [130] J. A. Palero, A. N. Bader, H. S. de Bruijn, A. der Ploeg van den Heuvel, H. J. Sterenborg, H. C. Gerritsen, "In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy," Biomed. Opt. Express 2(5), 1030–1039 (2011).

    [131] X. Han, E. Brown, "Measurement of the ratio of forward-propagating to back-propagating second harmonic signal using a single objective," Opt. Express 18(10), 10538–10550 (2010).

    Riccardo Cicchi, Francesco Saverio Pavone. Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1330008
    Download Citation