• Infrared and Laser Engineering
  • Vol. 49, Issue 3, 0303013 (2020)
Chenxing Wang1、2 and Feipeng Da1、2
Author Affiliations
  • 1School of Automation, Southeast University, Nanjing 210096, China
  • 2Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
  • show less
    DOI: 10.3788/IRLA202049.0303013 Cite this Article
    Chenxing Wang, Feipeng Da. Researches of optical fringe pattern analysis based on EMD algorithms[J]. Infrared and Laser Engineering, 2020, 49(3): 0303013 Copy Citation Text show less
    References

    [1] Kemao Q. Windowed Fringe Pattern Analysis[M]. Washington: SPIE Press, 2013.

    [2] Malacara D. Optical Shop Testing[M]. 3rd ed. New Jersey: John Wiley Sons, 2007.

    [3] M Takeda, H Ina, S Kobayashi. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America A, 72, 156-160(1982).

    [4] M Takeda, K Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics, 22, 3977-3982(1983).

    [5] Q Kemao. Windowed Fourier transform for fringe pattern analysis. Applied Optics, 43, 2695-2702(2004).

    [6] Z Zhang, J Zhong. Applicability analysis of wavelet-transform profilometry. Optics Express, 21, 18777-18796(2013).

    [7] M Jiang, W Chen, Z Zheng. Fringe pattern analysis by S-transform. Optics Communications, 285, 209-217(2012).

    [8] J Zhong. Phase retrieval of optical fringe patterns from the ridge of a wavelet transform. Optics Letters, 30, 2560-2562(2005).

    [9] F Da, F Dong. Windowed Fourier transform profilometry based on improved S-transform. Optics Letters, 37, 3561-3563(2012).

    [10] S Fernandez, M Gdeisat, J Salvi. Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets. Optics Communications, 284, 2797-2807(2011).

    [11] J Ma, Z Wang, M Vo. Wavelet selection in two-dimensional continuous wavelet transform technique for optical fringe pattern analysis. Journal of Optics, 14, 065403(2012).

    [12] C Wang, F Da. Phase demodulation using adaptive windowed Fourier transform based on Hilbert-Huang transform. Optics Express, 20, 18459-18477(2012).

    [13] Chen Tang, Mingming Chen, Xia Chen. Informaiton exaction methods based on variational image decomposition for electronic speckle pattern interferometry. Acta Optica Sinica, 38, 0328002(2018).

    [14] Huang N E, Shen S. S. P. HilbertHuang Transfm its Applications[M]. Singape : Wd Scientific, 2005.

    [15] G Lagubeau, P Cobelli, T Bobinski. Empirical mode decomposition profilometry: small-scale capabilities and comparison to Fourier transform profilometry. Applied Optics, 54, 9409-9414(2015).

    [16] N E Huang, Z Shen, R Steven. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A, 454, 903-995(1998).

    [17] L Vincent. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, 2, 176-201(1993).

    [18] J C Nunes, Y Bouaoune, E Delechelle. Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing, 21, 1019-1026(2003).

    [19] S M A Bhuiyan, R R Adhami, J F Khan. Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. EURASIP Journal on Advances in Signal Processing, 2008, 728356(2008).

    [20] M Trusiak, M Wielgus, K Patorski. Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition. Optics and Lasers in Engineering, 52, 230-240(2014).

    [21] N E Huang, Z Shen, S R Long. A new view of nonlinear water waves: the Hilbert spectrum. Annual Review of Fluid Mechanics, 31, 417-457(1999).

    [22] N E Huang, M C Wu, S R Long. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Mathematical, Physical and Engineering Sciences, 459, 2317-2345(2003).

    [23] Nunes J C, Niang O, Bouaoune Y, et al. Texture analysis based on the bidimensional empirical mode decomposition with graylevel cooccurrence models[C] Seventh International Symposium on Signal Processing its Applications, 2003: 8007630.

    [24] Z Wu, N E Huang. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1-41(2009).

    [25] J R Yeh, J S Shieh, N E Huang. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2, 135-136(2010).

    [26] Tres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C] IEEE International Conference on Acoustic, Speech Signal Processing, 2011: 4144−4147.

    [27] W Wang, X Chen. Multiscale modeling of fiber optic gyroscope temperature drift based on improved ensemble empirical mode decomposition. Applied Optics, 57, 8443-8450(2018).

    [28] Deering R, Kaiser J F. The use of a masking signal to improve empirical mode decomposition[C] IEEE International conference on Acoustic, Speech Signal Processing, 2005: 485−488.

    [29] C Wang, F Da. Differential signal-assisted method for adaptive analysis of fringe pattern. Applied Optics, 53, 6222-6229(2014).

    [30] C Wang, Q Kemao, F Da. Regenerated phase-shifted sinusoid-assisted empirical mode decomposition. IEEE Signal Processing Letters, 23, 556-560(2016).

    [31] C Wang, Q Kemao, F Da. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition. Optics Express, 25, 24299-24311(2017).

    [32] Rilling G, Flrin P, Goncalves P. On empirical mode decomposition its algithms[C] IEEEEURASIP Wkshop on Nonlinear Signal Image Processing NSIP03, Grado(I), 2003.

    [33] G Rilling, P Flandrin. One or two frequencies? The empirical mode decomposition answers. IEEE Transactions on Signal Processing, 56, 85-95(2008).

    [34] Chang L, Lo M, Anssari N, et al. Parallel implementation of multidimensional ensemble empirical mode decomposition[C] IEEE International Conference on Acoustic, Speech Signal Processing, 2011: 1621−1624.

    [35] M B Bernini, G E Galizzi, A Federico. Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes. Optics and Lasers in Engineering, 45, 723-729(2007).

    [36] M B Bernini, A Federico, G H Kaufmann. Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition. Applied Optics, 47, 2592-2598(2008).

    [37] M B Bernini, A Federico, G H Kaufmann. Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition. Applied Optics, 50, 641-647(2011).

    [38] X Zhou, H Zhao, T Jiang. Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithms. Optics Letters, 34, 2033-2035(2009).

    [39] W Su, CK Lee, CW Lee. Noise-reduction for fringe analysis using the empirical mode decomposition with the generalized analysis model. Optics and Lasers in Engineering, 48, 212-217(2010).

    [40] C Wang, F Da. Phase retrieval for noisy fringe pattern by using empirical mode decomposition and Hilbert Huang transform. Optical Engineering, 51, 061306(2012).

    [41] C Wang, Q Kemao, F Da. Regenerated Phase-shifted sinusoids assisted EMD for adaptive analysis of fringe patterns. Optics and Lasers in Engineering, 87, 176-184(2016).

    [42] Y Zhou, H Li. Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition. Optics Express, 19, 18207-18215(2011).

    [43] Y Zhou, H Li. Enhancement strategy based on three-layer filtering for a single fringe pattern. Optics letters, 8, 4124-4127(2013).

    [44] Y Zhou, H Li. A denoising scheme for DSPI fringes based on fast bidimensional ensemble empirical mode decomposition and BIMF energy estimation. Mechanical Systems and Signal Processing, 35, 369-382(2013).

    [45] Z Wu, N E Huang. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society A, 460, 1597-1611(2004).

    [46] M Trusiak, K Patorski, M Wielgus. Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform. Optics Express, 20, 23463-23479(2012).

    [47] M Trusiak, K Patorski, K Pokorski. Hilbert-Huang processing for single-exposure two-dimensional grating interferometry. Optics Express, 21, 28359-28379(2013).

    [48] K Patorski, M Trusiak, K Pokorski. Diffraction grating three-beam interferometry without self-imaging regime contrast modulation. Optics Letters, 40, 1089-1092(2015).

    [49] M Trusiak, K Patorski. Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang prefiltering. Optics Express, 23, 4672-4690(2015).

    [50] M Trusiak, A Styk, K Patorski. Hilbert-Huang transform based advanced Bessel fringe generation and demodulation for full-field vibration studies of specular reflection micro-objects. Optics and Lasers in Engineering, 110, 100-112(2018).

    [51] F A M Bodriguez, A Federico, G H Kaufmann. Hilbert transform analysis of a time series of speckle interferograms with a temporal carrier. Applied Optics, 47, 1310-1316(2008).

    [52] W Deng, Z Liu, Z Deng. Extraction of interference phase in frequency-scanning interferometry based on empirical mode decomposition and Hilbert transform. Applied Optics, 57, 2299-2305(2018).

    [53] Sikun Li, Wenjing Chen, Xianyu Su. Empirical mode decomposition method for eliminating extention of zero component in Fourier transorm profilometry. Acta Optica Sinica, 29, 664-669(2009).

    [54] M B Bernini, A Federico, G H Kaufmann. Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform. Applied Optics, 48, 6862-6869(2009).

    [55] K Patorski, M Trusiak, T Tkaczyk. Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing. Optics Express, 22, 9517-9527(2014).

    [56] C Zhang, W Ren, T Mu. Empirical mode decomposition based background removal and de-noising in polarization interference imaging spectrometer. Optics Express, 21, 2592-2605(2013).

    [57] S Osman, W Wang. An enhanced Hilbert-Huang transform technique for bearing condition monitoring. Measurement Science and Technology, 24, 085004(2013).

    [58] X Zhou, A G Podoleanu, Z Yang. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns. Optics Express, 20, 24247-24262(2012).

    [59] C Wang, F Da, K Lu. Modified local mean decomposition algorithm for adaptive analysis of fringe patterns. Chinese Optics Letters, 12, S11003(2014).

    [60] K Dabov, A Foi, V KatKovnk. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    Chenxing Wang, Feipeng Da. Researches of optical fringe pattern analysis based on EMD algorithms[J]. Infrared and Laser Engineering, 2020, 49(3): 0303013
    Download Citation