[1] Wang W H. The nature and properties of amorphous matter[J]. Progress in Physics, 33, 177-351(2013).
[2] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 187, 869-870(1960).
[3] Chen H S. The glass transition temperature in glassy alloys: effects of atomic sizes and the heats of mixing[J]. Acta Metallurgica, 22, 897-900(1974).
[4] TakeuchiA, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses[J]. Materials Science and EngineeringA, 2001, 304/305/306: 446- 451.
[5] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 48, 279-306(2000).
[6] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 59, 2243-2267(2011).
[7] Ding H P, Gong P, Yao K F et al. The forming of amorphous alloy parts: a technological review[J]. Materials Reports, 34, 139-147(2020).
[8] Zhang L, Huang H. Micro machining of bulk metallic glasses: a review[J]. The International Journal of Advanced Manufacturing Technology, 100, 637-661(2019).
[9] Lu X Y, Du Y L, Liao W H. Research progress of 3D printed bulk metallic glasses[J]. Hot Working Technology, 47, 26-29(2018).
[10] Jiang Z P, Chen X M, Zhao J et al. Research progress and prospect of laser cladding technology for preparation of amorphous coatings[J]. Materials Reports, 33, 191-194(2019).
[11] Chen H Z, Deng Y B, Huang J K et al. Research status of amorphous alloy welding technology[J]. Hot Working Technology, 48, 5-9(2019).
[12] Lu Y Z, Huang Y J, Wu J et al. Graded structure of laser direct manufacturing bulk metallic glass[J]. Intermetallics, 103, 67-71(2018).
[13] Lu Y Z, Huang Y J, Wu J. Laser additive manufacturing of structural-graded bulk metallic glass[J]. Journal of Alloys and Compounds, 766, 506-510(2018).
[14] Pauly S, Löber L, Petters R et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 16, 37-41(2013).
[15] Jung H Y, Choi S J, Prashanth K G et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study[J]. Materials & Design, 86, 703-708(2015).
[16] Li X P, Kang C W, Huang H et al. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: processing, microstructure evolution and mechanical properties[J]. Materials Science and Engineering A, 606, 370-379(2014).
[17] Li X P, Roberts M P. O'Keeffe S, et al. Selective laser melting of Zr-based bulk metallic glasses: processing, microstructure and mechanical properties[J]. Materials & Design, 112, 217-226(2016).
[18] Pauly S, Schricker C, Scudino S et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 135, 133-141(2017).
[19] Ouyang D, Li N, Xing W et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 90, 128-134(2017).
[20] Guo S, Wang M, Zhao Z et al. Molecular dynamics simulation on the micro-structural evolution in heat-affected zone during the preparation of bulk metallic glasses with selective laser melting[J]. Journal of Alloys and Compounds, 697, 443-449(2017).
[21] Guo S, Wang M, Lin X et al. Research on the crystallization behavior occurred in the process of preparing bulk metallic glass with selective laser melting[J]. Materials Research Express, 6, 066582(2019).
[23] Li Y C, Zhang C, Xing W et al. Design of Fe-based bulk metallic glasses with improved wear resistance[J]. ACS Applied Materials & Interfaces, 10, 43144-43155(2018).
[24] Deng L, Wang S H, Wang P et al. Selective laser melting of a Ti-based bulk metallic glass[J]. Materials Letters, 212, 346-349(2018).
[25] Zhang C, Li X M, Liu S Q et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications[J]. Journal of Alloys and Compounds, 790, 963-973(2019).
[26] Sun H, Flores K M. Microstructural analysis of a laser-processed Zr-based bulk metallic glass[J]. Metallurgical and Materials Transactions A, 41, 1752-1757(2010).
[27] Jung H Y, Choi S J, Prashanth K G et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study[J]. Materials & Design, 86, 703-708(2015).
[28] Liu K X, Liu W D, Wang J T et al. Atomic-scale bonding of bulk metallic glass to crystalline aluminum[J]. Applied Physics Letters, 93, 081918(2008).
[29] ShojiT, KawamuraY, de Ohno Y. Friction welding of bulk metallic glasses to different ones[J]. Materials Science and EngineeringA, 2004, 375/376/377: 394- 398.
[30] Li B, Li Z Y, Xiong J G et al. Laser welding of Zr45Cu48Al7 bulk glassy alloy[J]. Journal of Alloys and Compounds, 413, 118-121(2006).
[31] Wang G, Huang Y J, Shagiev M et al. Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass[J]. Materials Science and Engineering A, 541, 33-37(2012).
[32] Wang G, Huang Y J, Shen J et al. Laser welding behavior of TiZrNiCuBe bulk metallic glass and numerical simulation of temperature fields[J]. Rare Metal Materials and Engineering, 43, 2713-2718(2014).
[33] Ma Y Y, Wang H Y, Zhang Y P et al. Crystallization control and microstructural properties of laser welded Zr67.8Cu24.7Al3.43Ni4.07 bulk metallic glasses[J]. Transactions of the China Welding Institution, 40, 138-142, 167(2019).
[34] Kim J, Lee D, Shin S et al. Phase evolution in Cu54Ni6Zr22Ti18 bulk metallic glass Nd∶YAG laser weld[J]. Materials Science and Engineering A, 434, 194-201(2006).
[35] Chen B, Shi T L, Li M et al. Laser welding of annealed Zr55Cu30Ni5Al10 bulk metallic glass[J]. Intermetallics, 46, 111-117(2014).
[36] Wang H S, Chiou M S, Chen H G et al. The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass[J]. Materials Chemistry and Physics, 129, 547-552(2011).
[37] Wang G. Special welding behaviors of a Ti40Zr25Ni3Cu12Be20 bulk metallic glass[D]. Harbin: Harbin Institute of Technology(2012).
[38] Terajima T, Kimura H, Inoue A. Butt welding of Mg-Cu-Gd bulk metallic glass using a high-brightness fiber laser[J]. Transaction of JWRI, 39, 61-64(2010).
[39] Jones H. Observations on a structural transition in aluminium alloys hardened by rapid solidification[J]. Materials Science and Engineering, 5, 1-18(1969).
[40] Cui C Y, Hu J D, Liu Y H et al. Formation of nano-crystalline and amorphous phases on the surface of stainless steel by Nd∶YAG pulsed laser irradiation[J]. Applied Surface Science, 254, 6779-6782(2008).
[41] Mojaver R, Mojtahedi F, Shahverdi H R et al. Study on feasibility of producing an amorphous surface layer of Fe49Cr18Mo7B16C4Nb3 by pulsed Nd∶YAG laser surface melting[J]. Applied Surface Science, 264, 176-183(2013).
[42] Ge Y Q. Research on laser surface modifying behavior of magnesium alloy with rapid cooling[D]. Taiyuan: Taiyuan University of Technology(2014).
[43] Yang Y Q, Song Y L, Wu W T et al. Multi-pass overlapping laser glazing of FeCrPC and CoNiSiB alloys[J]. Thin Solid Films, 323, 199-202(1998).
[44] Yao S S, Li G Y, Hu W B[M]. Surface science and technology(2005).
[45] Wang J Q. Thermal spraying amorphous metallic coatings: corrosion and mechanical properties study. C]∥Thermal Spraying Professional Committee of China Surface Engineering Association. Proceedings of the 20th International Thermal Spraying Seminar and the 21st National Thermal Spraying Annual Confer, 16-28(2017).
[46] Yoshioka H, Asami K, Kawashima A et al. Laser-processed corrosion-resistant amorphous Ni-Cr-P-B surface alloys on a mild steel[J]. Corrosion Science, 27, 981-995(1987).
[49] Li G, Hou J Y, Liu L et al. Study on microstructure and properties of the Ni-based amorphous composite coating prepared by laser cladding[J]. Surface Technology, 39, 15-17, 24(2010).
[51] Li R, Chen Z, Gu J et al. Effects of heat inputs on the structure of Ni-based amorphous composite coatings applied with laser cladding[J]. Materiali in Tehnologije, 53, 521-526(2019).
[52] Gao Y L, Jie M, Zhang H B. Influence of laser scanning speed on Cu-Zr-Al composite coatings on Mg alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 20, 568-573(2013).
[54] Gao Y L, Wang C S, Xiong D S et al. Influence of laser technology parameters on preparation of amorphous coatings on magnesium alloy[J]. Transactions of Materials and Heat Treatment, 30, 146-150, 155(2009).
[55] Wang Y F, Lu Q L, Xiao L J et al. Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J]. Rare Metal Materials and Engineering, 43, 274-277(2014).
[56] Hou X C, Du D, Wang K M et al. Microstructure and wear resistance of Fe-Cr-Mo-Co-C-B amorphous composite coatings synthesized by laser cladding[J]. Metals, 8, 622-635(2018).
[57] Chen M H, Zhu H M, Wang X L. Research progress on laser cladding amorphous coatings on metallic substrates[J]. Journal of Materials Engineering, 45, 120-128(2017).
[58] Guo P, Lu Y, Ehmann K F et al. Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting[J]. CIRP Annals, 63, 553-556(2014).
[59] Hu Z, Gorumlu S, Aksak B et al. Patterning of metallic glasses using polymer templates[J]. Scripta Materialia, 108, 15-18(2015).
[60] He P, Li L K, Wang F et al. Bulk metallic glass mold for high volume fabrication of micro optics[J]. Microsystem Technologies, 22, 617-623(2016).
[61] Jia W, Peng Z N, Wang Z J et al. The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy[J]. Applied Surface Science, 253, 1299-1303(2006).
[62] SanoT, TakahashiK, HiroseA, et al., 2007, 539/540/541/542/543: 1951- 1954.
[64] Williams E, Brousseau E B. Nanosecond laser processing of Zr41.2Ti13.8Cu12.5Ni10Be22.5 with single pulses[J]. Journal of Materials Processing Technology, 232, 34-42(2016).
[65] Cao Y P. Effect of fluence on CuZr amorphous alloy ablated by femtosecond laser and analysis of no-phase change ablation mechanism[D]. Hengyang: University of South China(2017).
[66] Wang X L, Lu P X, Dai N L et al. Morphology and oxidation of Zr-based amorphous alloy ablated by femtosecond laser pulses[J]. Applied Physics A, 89, 547-552(2007).
[67] Huang H, Jun N, Jiang M Q et al. Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate[J]. Materials & Design, 109, 153-161(2016).
[68] Fornell J, Pellicer E, Garcia-Lecina E et al. Structural and mechanical modifications induced on Cu47.5Zr47.5Al5 metallic glass by surface laser treatments[J]. Applied Surface Science, 290, 188-193(2014).
[70] Huang H, Yan J W. Surface patterning of Zr-based metallic glass by laser irradiation induced selective thermoplastic extrusion in nitrogen gas[J]. Journal of Micromechanics and Microengineering, 27, 075007(2017).
[71] Du C Z, Wang C Y, Zhang T et al. Reduced bacterial adhesion on zirconium-based bulk metallic glasses by femtosecond laser nanostructuring[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 234, 387-397(2020).