• Laser & Optoelectronics Progress
  • Vol. 61, Issue 16, 1600001 (2024)
Yao Zhou1、2 and Peng Fei1、2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Advanced Biomedical Imaging Facility, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/LOP232549 Cite this Article Set citation alerts
    Yao Zhou, Peng Fei. China's Top 10 Optical Breakthroughs: Deep Learning-Enhanced High-Throughput Fluorescence Microscopy (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1600001 Copy Citation Text show less
    References

    [1] Diaspro A[M]. Confocal and two-photon microscopy: foundations, applications and advances(2001).

    [2] Jonkman J, Brown C M, Wright G D et al. Tutorial: guidance for quantitative confocal microscopy[J]. Nature Protocols, 15, 1585-1611(2020).

    [3] Huisken J, Swoger J, del Bene F et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 305, 1007-1009(2004).

    [4] Power R M, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging[J]. Nature Methods, 14, 360-373(2017).

    [5] Stelzer E H K, Strobl F, Chang B J et al. Light sheet fluorescence microscopy[J]. Nature Reviews Methods Primers, 1, 73(2021).

    [6] Verveer P J, Swoger J, Pampaloni F et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy[J]. Nature Methods, 4, 311-313(2007).

    [7] Keller P J, Schmidt A D, Wittbrodt J et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 322, 1065-1069(2008).

    [8] Santi P A, Johnson S B, Hillenbrand M et al. Thin-sheet laser imaging microscopy for optical sectioning of thick tissues[J]. BioTechniques, 46, 287-294(2009).

    [9] Wang H, Zhu Q Y, Ding L F et al. Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution[J]. National Science Review, 6, 982-992(2019).

    [10] Glaser A K, Reder N P, Chen Y et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens[J]. Nature Biomedical Engineering, 1, 84(2017).

    [11] Yang B, Chen X Y, Wang Y N et al. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution[J]. Nature Methods, 16, 501-504(2019).

    [12] Bimber O, Schedl D. Light-field microscopy: a review[J]. Journal of Neurology & Neuromedicine, 4, 1-6(2019).

    [13] Levoy M, Ng R, Adams A et al. Light field microscopy[J]. ACM Transactions on Graphics, 25, 924-934(2006).

    [14] Gershun A. The light field[J]. Journal of Mathematics and Physics, 18, 51-151(1939).

    [15] Broxton M, Grosenick L, Yang S et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Optics Express, 21, 25418-25439(2013).

    [16] Keller P J, Ahrens M B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy[J]. Neuron, 85, 462-483(2015).

    [17] Zheludev N I, Yuan G H. Optical superoscillation technologies beyond the diffraction limit[J]. Nature Reviews Physics, 4, 16-32(2022).

    [18] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [19] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [20] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [21] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [22] Jungmann R, Avendaño M S, Woehrstein J B et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT[J]. Nature Methods, 11, 313-318(2014).

    [23] Dertinger T, Colyer R, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 22287-22292(2009).

    [24] Gustafsson N, Culley S, Ashdown G et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[J]. Nature Communications, 7, 12471(2016).

    [25] Rivenson Y, Göröcs Z, Günaydin H et al. Deep learning microscopy[J]. Optica, 4, 1437-1443(2017).

    [26] Wang H D, Rivenson Y, Jin Y Y et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 16, 103-110(2019).

    [27] Zhang H, Fang C Y, Xie X L et al. High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network[J]. Biomedical Optics Express, 10, 1044-1063(2019).

    [28] Zhang H, Zhao Y X, Fang C Y et al. Exceeding the limits of 3D fluorescence microscopy using a dual-stage-processing network[J]. Optica, 7, 1627-1640(2020).

    [29] Zhao Y X, Zhang M, Zhang W T et al. Isotropic super-resolution light-sheet microscopy of dynamic intracellular structures at subsecond timescales[J]. Nature Methods, 19, 359-369(2022).

    [30] Jin L H, Liu B, Zhao F Q et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed[J]. Nature Communications, 11, 1934(2020).

    [31] Ling C, Zhang C L, Wang M Q et al. Fast structured illumination microscopy via deep learning[J]. Photonics Research, 8, 1350-1359(2020).

    [32] Zhang Q N, Chen J W, Li J S et al. Deep learning-based single-shot structured illumination microscopy[J]. Optics and Lasers in Engineering, 155, 107066(2022).

    [33] Nehme E, Weiss L E, Michaeli T et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018).

    [34] Ouyang W, Aristov A, Lelek M et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 36, 460-468(2018).

    [35] Narayanasamy K K, Rahm J V, Tourani S et al. Fast DNA-PAINT imaging using a deep neural network[J]. Nature Communications, 13, 5047(2022).

    [36] Chen R, Tang X, Zhao Y X et al. Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging[J]. Nature Communications, 14, 2854(2023).

    [37] Wagner N, Beuttenmueller F, Norlin N et al. Deep learning-enhanced light-field imaging with continuous validation[J]. Nature Methods, 18, 557-563(2021).

    [38] Wang Z Q, Zhu L X, Zhang H et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning[J]. Nature Methods, 18, 551-556(2021).

    [39] Zhu L X, Sun J H, Yi C Q et al. Optics-aware super-resolution light-field microscopy for long-term volumetric imaging of dynamic intracellular processes at millisecond timescales[EB/OL]. https://www.biorxiv.org/content/10.1101/2023.03.15.532876v1

    [40] Zhao F, Zhu L X, Fang C Y et al. Deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic volumetric imaging of large biological specimens[J]. Biomedical Optics Express, 11, 7273-7285(2020).

    [41] Xiao L, Fang C Y, Zhu L X et al. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens[J]. Optics Express, 28, 30234-30247(2020).

    [42] Fang C Y, Yu T T, Chu T T et al. Minutes-timescale 3D isotropic imaging of entire organs at subcellular resolution by content-aware compressed-sensing light-sheet microscopy[J]. Nature Communications, 12, 107(2021).

    [43] Ning K F, Lu B L, Wang X J et al. Deep self-learning enables fast, high-fidelity isotropic resolution restoration for volumetric fluorescence microscopy[J]. Light: Science & Applications, 12, 204(2023).

    Yao Zhou, Peng Fei. China's Top 10 Optical Breakthroughs: Deep Learning-Enhanced High-Throughput Fluorescence Microscopy (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1600001
    Download Citation