• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021417 (2022)
Qian SHI1、2、3, Shu-Kui ZHANG2、3、*, Jian-Lu WANG2、3、4、5、**, and Jun-Hao CHU3、4
Author Affiliations
  • 1Shanghai Institute Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China
  • 2Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • 3State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 4Institute of Optoelectronics,Shanghai Frontier Base of Intelligent Optoelectronics and Perception,Fudan University,Shanghai 200433,China
  • 5Frontier Institute of Chip and System,Fudan University,Shanghai 200433,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.010 Cite this Article
    Qian SHI, Shu-Kui ZHANG, Jian-Lu WANG, Jun-Hao CHU. Progress on nBn infrared detectors[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021417 Copy Citation Text show less
    References

    [1] A Rogalski. Infrared and Terahertz Detectors(2019).

    [2] A Rogalski. History of infrared detectors. Opto-Electronics Review, 20, 279-308(2012).

    [3] H Bürsing, R Ebert, D A Huckridge et al. Next decade in infrared detectors, 100(2017).

    [4] C Corsi. History highlights and future trends of infrared sensors. Journal of Modern Optics, 57, 1663-1686(2010).

    [5] A Manissadjian, L Rubaldo, Y Rebeil et al. Improved IR detectors to swap heavy systems for SWaP, 8353, 835334(2012).

    [6] R Driggers, R Vollmerhausen, J Reynolds et al. Infrared detector size: how low should you go?. Optical Engineering, 51, 063202(2012).

    [7] A Rogalski, P Martyniuk, M Kopytko. Challenges of small-pixel infrared detectors: a review. Rep Prog Phys, 79, 046501(2016).

    [8] A Rogalski, M Razeghi. Narrow-gap semiconductor photodiodes, 3287, 2-13(1998).

    [9] T Ashley, C T Elliott. Nonequilibrium devices for infra-red detection. Electronics Letters, 21, 451-452(1985).

    [10] L Gendron, M Carras, A Huynh et al. Quantum cascade photodetector. Applied Physics Letters, 85, 2824-2826(2004).

    [11] J V Li, R Q Yang, C J Hill et al. Interband cascade detectors with room temperature photovoltaic operation. Applied Physics Letters, 86(2005).

    [12] D L Smith, C Mailhiot. Proposal for strained type II superlattice infrared detectors. Journal of Applied Physics, 62, 2545-2548(1987).

    [13] S Maimon, G W Wicks. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Applied Physics Letters, 89(2006).

    [14] S Maimon, G W Wicks. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Applied Physics Letters, 89, 151109(2006).

    [15] M Razeghi, E Tournié, G J Brown et al. InSb photodetectors with PIN and nBn designs, 8993, 899313(2013).

    [16] A Evirgen, J P Perez, P Christol et al. Midwave infrared InSb nBn photodetector. Electronics Letters, 50, 1472-1473(2014).

    [17] J P Perez, A Evirgen, J Abautret et al. MWIR InSb detector with nBn architecture for high operating temperature, 9370, 93700N(2015).

    [18] P Klipstein. "XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors, 6940, 69402U(2008).

    [19] A Khoshakhlagh, S Myers, E Plis et al. Mid-wavelength InAsSb detectors based on nBn design, 7660, 76602Z(2010).

    [20] E Weiss, O Klin, S Grossmann et al. InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs. Journal of Crystal Growth, 339, 31-35(2012).

    [21] A Soibel, C J Hill, S A Keo et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors. Applied Physics Letters, 105, 023512(2014).

    [22] J B Rodriguez, E Plis, G Bishop et al. nBn structure based on InAs∕GaSb type-II strained layer superlattices. Applied Physics Letters, 91, 043514(2007).

    [23] D Z Ting, C J Hill, A Soibel et al. Antimonide-based barrier infrared detectors, 7660, 76601R(2010).

    [24] A Khoshakhlagh, S Myers, K HaSul et al. Long-Wave InAs/GaSb Superlattice Detectors Based on nBn and Pin Designs. IEEE Journal of Quantum Electronics, 46, 959-964(2010).

    [25] H S Kim, O O Cellek, Z-Y Lin et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices. Applied Physics Letters, 101, 161114(2012).

    [26] D Z Ting, A Soibel, A Khoshakhlagh et al. Antimonide type-II superlattice barrier infrared detectors, 10177, 101770N(2017).

    [27] A Haddadi, R Chevallier, A Dehzangi et al. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier. Applied Physics Letters, 110, 101104(2017).

    [28] D R Rhiger, E P Smith. Carrier Transport in the Valence Band of nBn III–V Superlattice Infrared Detectors. Journal of Electronic Materials, 48, 6053-6062(2019).

    [29] D Z Ting, A Soibel, A Khoshakhlagh et al. Development of InAs/InAsSb Type II Strained-Layer Superlattice Unipolar Barrier Infrared Detectors. Journal of Electronic Materials, 48, 6145-6151(2019).

    [30] A M Itsuno, J D Phillips, S Velicu. Design and Modeling of HgCdTe nBn Detectors. Journal of Electronic Materials, 40, 1624-1629(2011).

    [31] A M Itsuno, J D Phillips, S Velicu. Design of an Auger-Suppressed Unipolar HgCdTe NBνN Photodetector. Journal of Electronic Materials, 41, 2886-2892(2012).

    [32] A M Itsuno, J D Phillips, S Velicu. Mid-wave infrared HgCdTe nBn photodetector. Applied Physics Letters, 100, 161102(2012).

    [33] N D Akhavan, G A Umana-Membreno, G Jolley et al. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Applied Physics Letters, 105, 121110(2014).

    [34] M Kopytko. Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n- and p-type barriers. Infrared Physics & Technology, 64, 47-55(2014).

    [35] O Gravrand, F Boulard, A Ferron et al. A New nBn IR Detection Concept Using HgCdTe Material. Journal of Electronic Materials, 44, 3069-3075(2015).

    [36] G R Savich, J R Pedrazzani, D E Sidor et al. Dark current filtering in unipolar barrier infrared detectors. Applied Physics Letters, 99, 121112(2011).

    [37] P Martyniuk, M Kopytko, A Rogalski. Barrier infrared detectors. Opto-Electronics Review, 22, 127-146(2014).

    [38] A Kazemi, S Myers, Z Taghipour et al. Mid-wavelength infrared unipolar nBp superlattice photodetector. Infrared Physics & Technology, 88, 114-118(2018).

    [39] F Uzgur, S Kocaman. Barrier engineering for HgCdTe unipolar detectors on alternative substrates. Infrared Physics & Technology, 97, 123-128(2019).

    [40] M Vallone, M Goano, F Bertazzi et al. Constraints and performance trade-offs in Auger-suppressed HgCdTe focal plane arrays. Appl Opt, 59, E1-E8(2020).

    [41] M Vallone, M Goano, F Bertazzi et al. Reducing inter-pixel crosstalk in HgCdTe detectors. Optical and Quantum Electronics, 52(2019).

    [42] C T Sah, R N Noyce, W Shockley. Carrier generation and recombination in pn junctions and pn junction characteristics. Proceedings of the IRE, 45, 1228-1243(1957).

    [43] G R Savich, J R Pedrazzani, D E Sidor et al. Benefits and limitations of unipolar barriers in infrared photodetectors. Infrared Physics & Technology, 59, 152-155(2013).

    [44] P Klipstein. "XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors. Proc of SPIE Vol 6940 69402U-1(2008).

    [45] W E Tennant, D Lee, M Zandian et al. MBE HgCdTe Technology: A Very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic. Journal of Electronic Materials, 37, 1406-1410(2008).

    [46] D Lee, P Dreiske, J Ellsworth et al. Law 19: The ultimate photodiode performance metric, 11407, 114070X(2020).

    [47] G R Savich, D E Sidor, X Du et al. Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors. Applied Physics Letters, 106, 173505(2015).

    [48] A Rogalski, P Martyniuk. Mid-Wavelength Infrared nBn for HOT Detectors. Journal of Electronic Materials, 43, 2963-2969(2014).

    [49] P Klipstein, O Klin, S Grossman et al. High operating temperature XBn-InAsSb bariode detectors, 8268, 82680U(2012).

    [50] P C Klipstein, Y Gross, D Aronov et al. Low SWaP MWIR detector based on XBn focal plane array, 8704, 87041S(2013).

    [51] H Kroemer. The family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E: Low-dimensional Systems and Nanostructures, 20, 196-203(2004).

    [52] I Vurgaftman, J R Meyer, L R Ram-Mohan. Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89, 5815-5875(2001).

    [53] D Z Ting, C J Hill, A Soibel et al. Antimonide-based barrier infrared detectors, 7660, 76601R(2010).

    [54] P Klipstein. XBn barrier photodetectors based on InAsSb with high operating temperatures. Optical Engineering, 50(2011).

    [55] P Klipstein, O Klin, S Grossman et al. XBn barrier detectors for high operating temperatures, 7608, 76081V(2010).

    [56] A I D'Souza, E Robinson, A C Ionescu et al. MWIR InAs1-xSbx nCBn detectors data and analysis, 8353, 835333(2012).

    [57] A Soibel, C J Hill, S A Keo et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors. Applied Physics Letters, 105(2014).

    [58] P Martyniuk, A Rogalski. Modeling of InAsSb/AlAsSb nBn HOT detector's performance limit, 8704, 87041X(2013).

    [59] P Martyniuk, A Rogalski. Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector. Optical and Quantum Electronics, 46, 581-591(2013).

    [60] A I D'Souza, E Robinson, A C Ionescu et al. MWIR InAsSb barrier detector data and analysis, 8704, 87041V(2013).

    [61] Y Karni, E Avnon, M B Ezra et al. Large format 15µm pitch XBn detector, 9070, 90701F(2014).

    [62] P Klipstein, O Klin, S Grossman et al. MWIR InAsSb XBnn detector (bariode) arrays operating at 150K, 8012, 80122R(2011).

    [63] G Gershon, E Avnon, M Brumer et al. 10 μm pitch family of InSb and XBn detectors for MWIR imaging, 10177, 101771I(2017).

    [64] A Evirgen, J Abautret, J P Perez et al. InSb photodetectors with PIN and nBn designs, 8993, 899313(2014).

    [65] A Evirgen, J Abautret, J P Perez et al. Midwave infrared InSb nBn photodetector. Electronics Letters, 50, 1472-1473(2014).

    [66] S M Sze, Y Li, K K Ng. Physics of semiconductor devices. John wiley & sons(2021).

    [67] J P Perez, A Evirgen, J Abautret et al. MWIR InSb detector with nBn architecture for high operating temperature, 9370, 93700N(2015).

    [68] A Rogalski, P Martyniuk, M Kopytko. Type-II superlattice photodetectors versus HgCdTe photodiodes. Progress in Quantum Electronics, 68(2019).

    [69] H Sakaki, L L Chang, R Ludeke et al. In1-xGaxAs‐GaSb1-yAsy heterojunctions by molecular beam epitaxy. Applied Physics Letters, 31, 211-213(1977).

    [70] J B Rodriguez, E Plis, G Bishop et al. nBn structure based on InAs∕GaSb type-II strained layer superlattices. Applied Physics Letters, 91(2007).

    [71] P C Klipstein, E Avnon, Y Benny et al. Type-II superlattice detector for long-wave infrared imaging, 9451, 94510K(2015).

    [72] A Haddadi, R Chevallier, A Dehzangi et al. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier. Applied Physics Letters, 110, 101104(2017).

    [73] W Hu, Z Ye, L Liao et al. 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Optics Letters, 39, 5184-5187(2014).

    [74] W D Hu, X S Chen, Z H Ye et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Applied Physics Letters, 99, 091101(2011).

    [75] G R Savich, J R Pedrazzani, D E Sidor et al. Use of unipolar barriers to block dark currents in infrared detectors, 8012, 80122T(2011).

    [76] H S Kim, O O Cellek, Z-Y Lin et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices. Applied Physics Letters, 101(2012).

    [77] S Velicu, J Zhao, M Morley et al. Theoretical and experimental investigation of MWIR HgCdTe nBn detectors, 8268, 82682X(2012).

    [78] M Kopytko, A Kębłowski, W Gawron et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD. Opto-Electronics Review, 21, 402-405(2013).

    [79] A M Itsuno, J D Phillips, S Velicu. Mid-wave infrared HgCdTe nBn photodetector. Applied Physics Letters, 100(2012).

    [80] A V Voitsekhovskii, S N Nesmelov, S M Dzyadukh et al. Diffusion-limited dark currents in mid-wave infrared HgCdTe-based nBn structures with Al2O3 passivation. Journal of Physics D: Applied Physics, 53, 055107(2019).

    [81] N D Akhavan, G Jolley, G A Umana-Membreno et al. Theoretical study of midwave infrared HgCdTe nBn detectors operating at elevated temperatures. Journal of Electronic Materials, 44, 3044-3055(2015).

    [82] N D Akhavan, G Jolley, G A Umana-Membreno et al. Performance Modeling of Bandgap Engineered HgCdTe-Based nBn Infrared Detectors. IEEE Transactions on Electron Devices, 61, 3691-3698(2014).

    [83] N D Akhavan, G A Umana-Membreno, G Jolley et al. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Applied Physics Letters, 105(2014).

    [84] N D Akhavan, G A Umana-Membreno, R Gu et al. Delta Doping in HgCdTe-Based Unipolar Barrier Photodetectors. IEEE Transactions on Electron Devices, 65, 4340-4345(2018).

    [85] M Kopytko, J Wróbel, K Jóźwikowski et al. Engineering the Bandgap of Unipolar HgCdTe-Based nBn Infrared Photodetectors. Journal of Electronic Materials, 44, 158-166(2014).

    [86] N Dehdashti Akhavan, G A Umana-Membreno, R Gu et al. Optimization of Superlattice Barrier HgCdTe nBn Infrared Photodetectors Based on an NEGF Approach. IEEE Transactions on Electron Devices, 65, 591-598(2018).

    [87] A Dehzangi, A Haddadi, R Chevallier et al. Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetectors. Semiconductor Science and Technology, 34, 03LT01(2019).

    [88] S D Gunapala, S B Rafol, D Z Ting et al. T2SL meta-surfaced digital focal plane arrays for Earth remote sensing applications, 9(2019).

    [89] D Z Ting, S B Rafol, S A Keo et al. InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Focal Plane Array With Significantly Higher Operating Temperature Than InSb. IEEE Photonics Journal, 10, 1-6(2018).

    [90] G Gershon, E Avnon, M Brumer et al. 10 µm pitch family of InSb and XBn detectors for MWIR imaging, 10177, 101771I(2017).

    [91] P C Klipstein, E Avnon, Y Benny et al. Type-II superlattice detector for long-wave infrared imaging, 9451, 94510K(2015).

    [92] Y Karni, E Avnon, M B Ezra et al. Large format 15 µm pitch XBn detector, 9070, 90701F(2014).

    [93] P C Klipstein, Y Gross, D Aronov et al. Low SWaP MWIR detector based on XBn focal plane array, 8704, 87041S(2013).

    [94] Y Chen, Y Wang, Z Wang et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 4, 357-363(2021).

    Qian SHI, Shu-Kui ZHANG, Jian-Lu WANG, Jun-Hao CHU. Progress on nBn infrared detectors[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021417
    Download Citation