[1] Li A D, Wei H, Cotrufo M et al. Exceptional points and non-Hermitian photonics at the nanoscale[J]. Nature Nanotechnology, 18, 706-720(2023).
[2] Chen H Z, Liu T, Luan H Y et al. Revealing the missing dimension at an exceptional point[J]. Nature Physics, 16, 571-578(2020).
[3] Koshelev K, Bogdanov A, Kivshar Y. Engineering with bound states in the continuum[J]. Optics & Photonics News, 31, 38(2020).
[4] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008).
[5] Plotnik Y, Peleg O, Dreisow F et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 107, 183901(2011).
[6] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).
[7] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).
[8] Doeleman H M, Monticone F, den Hollander W et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 12, 397-401(2018).
[9] Zhang Y W, Chen A, Liu W Z et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 120, 186103(2018).
[10] Chen Y, Du W, Zhang Q et al. Multidimensional nanoscopic chiroptics[J]. Nature Reviews Physics, 4, 113-124(2022).
[11] Mun J, Kim M, Yang Y et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena[J]. Light: Science & Applications, 9, 139(2020).
[12] Fernandez-Corbaton I, Fruhnert M, Rockstuhl C. Objects of maximum electromagnetic chirality[J]. Physical Review X, 6, 031013(2016).
[13] Overvig A C, Malek S C, Yu N F. Multifunctional nonlocal metasurfaces[J]. Physical Review Letters, 125, 017402(2020).
[14] Overvig A C, Malek S C, Carter M J et al. Selection rules for quasibound states in the continuum[J]. Physical Review B, 102, 035434(2020).
[15] Gorkunov M V, Antonov A A, Kivshar Y S. Metasurfaces with maximum chirality empowered by bound states in the continuum[J]. Physical Review Letters, 125, 093903(2020).
[16] Gorkunov M V, Antonov A A, Tuz V R et al. Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces[J]. Advanced Optical Materials, 9, 2100797(2021).
[17] Overvig A, Yu N F, Alù A. Chiral quasi-bound states in the continuum[J]. Physical Review Letters, 126, 073001(2021).
[18] Dixon J, Pan F, Moradifar P et al. Through thick and thin: how optical cavities control spin[J]. Nanophotonics, 12, 2779-2788(2023).
[19] Zhang X D, Liu Y L, Han J C et al. Chiral emission from resonant metasurfaces[J]. Science, 377, 1215-1218(2022).
[20] Chen Y, Deng H C, Sha X B et al. Observation of intrinsic chiral bound states in the continuum[J]. Nature, 613, 474-478(2023).
[21] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).
[22] Sadreev A F. Interference traps waves in an open system: bound states in the continuum[J]. Reports on Progress in Physics, 84, 055901(2021).
[23] Yao J Q, Li J T, Zhang Y T et al. Bound states in continuum in periodic optical systems[J]. Chinese Optics, 16, 1-23(2023).
[24] Kang M, Liu T, Chan C T et al. Applications of bound states in the continuum in photonics[J]. Nature Reviews Physics, 5, 659-678(2023).
[25] Xu G Z, Xing H Y, Xue Z Q et al. Recent advances and perspective of photonic bound states in the continuum[J]. Ultrafast Science, 3, 33(2023).
[26] Joseph S, Pandey S, Sarkar S et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications[J]. Nanophotonics, 10, 4175-4207(2021).
[27] Koshelev K L, Sadrieva Z F, Shcherbakov A A et al. Bound states in the continuum in photonic structures[J]. Physics-Uspekhi, 66, 494-517(2021).
[28] Bi Q H, Peng Y J, Chen R et al. Theory and application of bound states in the continuum in photonics[J]. Acta Optica Sinica, 43, 1623008(2023).
[29] Hu P, Wang J J, Jiang Q et al. Global phase diagram of bound states in the continuum[J]. Optica, 9, 1353-1361(2022).
[30] Hsu C W, Zhen B, Chua S L et al. Bloch surface eigenstates within the radiation continuum[J]. Light: Science & Applications, 2, e84(2013).
[31] Sadrieva Z, Frizyuk K, Petrov M et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 100, 115303(2019).
[32] Azzam S I, Shalaev V M, Boltasseva A et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 121, 253901(2018).
[33] Rybin M V, Koshelev K L, Sadrieva Z F et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).
[34] Monticone F, Doeleman H M, Den Hollander W et al. Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials[J]. Laser & Photonics Reviews, 12, 1700220(2018).
[35] Bogdanov A A, Koshelev K L, Kapitanova P V et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 1, 016001(2019).
[36] Huang L J, Xu L, Powell D A et al. Resonant leaky modes in all-dielectric metasystems: fundamentals and applications[J]. Physics Reports, 1008, 1-66(2023).
[37] Dong Z G, Mahfoud Z, Paniagua-Domínguez R et al. Nanoscale mapping of optically inaccessible bound-states-in-the-continuum[J]. Light: Science & Applications, 11, 20(2022).
[38] Overvig A, Alù A. Wavefront-selective Fano resonant metasurfaces[J]. Advanced Photonics, 3, 026002(2021).
[39] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).
[40] Han S, Pitchappa P, Wang W H et al. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces[J]. Advanced Optical Materials, 9, 2002001(2021).
[41] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).
[42] Ndao A, Hsu L, Cai W et al. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum[J]. Nanophotonics, 9, 1081-1086(2020).
[43] Kang M, Mao L, Zhang S P et al. Merging bound states in the continuum by harnessing higher-order topological charges[J]. Light: Science & Applications, 11, 228(2022).
[44] Chen Z H, Yin X F, Jin J C et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors[J]. Science Bulletin, 67, 359-366(2022).
[45] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).
[46] Bulgakov E N, Maksimov D N. Topological bound states in the continuum in arrays of dielectric spheres[J]. Physical Review Letters, 118, 267401(2017).
[47] Kang M, Zhang S P, Xiao M et al. Merging bound states in the continuum at off-high symmetry points[J]. Physical Review Letters, 126, 117402(2021).
[48] Liu W Z, Wang B, Zhang Y W et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 123, 116104(2019).
[49] Ye W M, Gao Y, Liu J L. Singular points of polarizations in the momentum space of photonic crystal slabs[J]. Physical Review Letters, 124, 153904(2020).
[50] Yoda T, Notomi M. Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking[J]. Physical Review Letters, 125, 053902(2020).
[51] Zeng Y X, Hu G W, Liu K P et al. Dynamics of topological polarization singularity in momentum space[J]. Physical Review Letters, 127, 176101(2021).
[52] Yin X F, Jin J C, Soljačić M et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 580, 467-471(2020).
[53] Barron L D. True and false chirality and absolute enantioselection[J]. Rendiconti Lincei, 24, 179-189(2013).
[54] Gansel J K, Thiel M, Rill M S et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 325, 1513-1515(2009).
[55] Hentschel M, Wu L, Schäferling M et al. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons[J]. ACS Nano, 6, 10355-10365(2012).
[56] Zhang S, Zhou J F, Park Y S et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 3, 942(2012).
[57] Cui Y H, Kang L, Lan S F et al. Giant chiral optical response from a twisted-arc metamaterial[J]. Nano Letters, 14, 1021-1025(2014).
[58] Wu Z L, Chen X D, Wang M S et al. High-performance ultrathin active chiral metamaterials[J]. ACS Nano, 12, 5030-5041(2018).
[59] Ji C Y, Chen S S, Han Y et al. Artificial propeller chirality and counterintuitive reversal of circular dichroism in twisted meta-molecules[J]. Nano Letters, 21, 6828-6834(2021).
[60] Shen Z L, Fan S T, Yin W et al. Chiral metasurfaces with maximum circular dichroism enabled by out-of-plane plasmonic system[J]. Laser & Photonics Reviews, 16, 2200370(2022).
[61] Kuwata-Gonokami M, Saito N, Ino Y et al. Giant optical activity in quasi-two-dimensional planar nanostructures[J]. Physical Review Letters, 95, 227401(2005).
[62] Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial[J]. Applied Physics Letters, 93, 191911(2008).
[63] Plum E, Liu X X, Fedotov V A et al. Metamaterials: optical activity without chirality[J]. Physical Review Letters, 102, 113902(2009).
[64] Plum E, Fedotov V A, Zheludev N I. Extrinsic electromagnetic chirality in metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 11, 074009(2009).
[65] Zhu A Y, Chen W T, Zaidi A et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures[J]. Light: Science & Applications, 7, 17158(2018).
[66] Dixon J, Lawrence M, Barton D R et al. Self-isolated Raman lasing with a chiral dielectric metasurface[J]. Physical Review Letters, 126, 123201(2021).
[67] Lim Y, Seo I C, An S et al. Maximally chiral emission via chiral quasi bound states in the continuum[J]. Laser & Photonics Reviews, 17, 2200611(2023).
[68] Tang Y H, Liang Y, Yao J et al. Chiral bound states in the continuum in plasmonic metasurfaces[J]. Laser & Photonics Reviews, 17, 2200597(2023).
[69] Wu J J, Xu X T, Su X Q et al. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum[J]. Physical Review Applied, 16, 064018(2021).
[70] Shen Z L, Fang X D, Li S N et al. Terahertz spin-selective perfect absorption enabled by quasi-bound states in the continuum[J]. Optics Letters, 47, 505-508(2022).
[71] Kim K H, Kim J R. High-Q chiroptical resonances by quasi-bound states in the continuum in dielectric metasurfaces with simultaneously broken in-plane inversion and mirror symmetries[J]. Advanced Optical Materials, 9, 2101162(2021).
[72] Semnani B, Flannery J, Al Maruf R et al. Spin-preserving chiral photonic crystal mirror[J]. Light: Science & Applications, 9, 23(2020).
[73] Khanikaev A B, Arju N, Fan Z et al. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials[J]. Nature Communications, 7, 12045(2016).
[74] Wu C, Arju N, Kelp G et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances[J]. Nature Communications, 5, 3892(2014).
[75] Shi T, Deng Z L, Geng G Z et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nature Communications, 13, 4111(2022).
[76] Chen W J, Yang Q D, Chen Y T et al. Extremize optical chiralities through polarization singularities[J]. Physical Review Letters, 126, 253901(2021).
[77] Kühner L, Wendisch F J, Antonov A A et al. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality[J]. Light: Science & Applications, 12, 250(2023).
[78] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).
[79] Koshelev K, Tang Y T, Li K et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 6, 1639-1644(2019).
[80] Zograf G, Koshelev K, Zalogina A et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum[J]. ACS Photonics, 9, 567-574(2022).
[81] Camacho-Morales R, Xu L, Zhang H Z et al. Sum-frequency generation in high-Q GaP metasurfaces driven by leaky-wave guided modes[J]. Nano Letters, 22, 6141-6148(2022).
[82] Koshelev K, Tonkaev P, Kivshar Y. Nonlinear chiral metaphotonics: a perspective[J]. Advanced Photonics, 5, 064001(2023).
[83] Gandolfi M, Tognazzi A, Rocco D et al. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces[J]. Physical Review A, 104, 023524(2021).
[84] Liu Q S, Chao M H, Zhang W J et al. Dual-band chiral nonlinear metasurface supported by quasibound states in the continuum[J]. Annalen Der Physik, 534, 2200263(2022).
[85] Koshelev K, Tang Y T, Hu Z X et al. Resonant chiral effects in nonlinear dielectric metasurfaces[J]. ACS Photonics, 10, 298-306(2023).
[86] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161(2011).
[87] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).
[88] Ni J C, Huang C, Zhou L M et al. Multidimensional phase singularities in nanophotonics[J]. Science, 374, eabj0039(2021).
[89] Iwahashi S, Kurosaka Y, Sakai K et al. Higher-order vector beams produced by photonic-crystal lasers[J]. Optics Express, 19, 11963-11968(2011).
[90] Wang B, Liu W Z, Zhao M X et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 14, 623-628(2020).
[91] Notomi M. Topology in momentum space becomes real[J]. Nature Photonics, 14, 595-596(2020).
[92] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).
[93] Wang J, Clementi M, Minkov M et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum[J]. Optica, 7, 1126-1132(2020).
[94] Kang L, Wu Y H, Ma X Z et al. High-harmonic optical vortex generation from photonic bound states in the continuum[J]. Advanced Optical Materials, 10, 2101497(2022).
[95] Liu W Z, Shi L, Zi J et al. Ways to achieve efficient non-local vortex beam generation[J]. Nanophotonics, 10, 4297-4304(2021).
[96] Li T Y, Wang J J, Zhang W J et al. High-efficiency nonlocal reflection-type vortex beam generation based on bound states in the continuum[J]. National Science Review, 10, nwac234(2022).
[97] Mohammadi E, Tavakoli A, Dehkhoda P et al. Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures[J]. ACS Photonics, 6, 1939-1946(2019).
[98] Hu J, Lawrence M, Dionne J A. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy[J]. ACS Photonics, 7, 36-42(2020).
[99] Du K, Li P, Wang H et al. Optical chirality enhancement in hollow silicon disk by dipolar interference[J]. Advanced Optical Materials, 9, 2001771(2021).
[100] Chen Y, Zhao C, Zhang Y Z et al. Integrated molar chiral sensing based on high-Q metasurface[J]. Nano Letters, 20, 8696-8703(2020).
[101] Wu T, Zhang W X, Zhang H Z et al. Vector exceptional points with strong superchiral fields[J]. Physical Review Letters, 124, 083901(2020).
[102] Barkaoui H, Du K, Chen Y M et al. Merged bound states in the continuum for giant superchiral field and chiral mode splitting[J]. Physical Review B, 107, 045305(2023).
[103] Li J H, Ren J, Zhang X D. Three-dimensional vector wave bound states in a continuum[J]. Journal of the Optical Society of America B, 34, 559-565(2017).
[104] Zhang H Z, Zhang W X, Chen S H et al. Experimental observation of vector bound states in the continuum[J]. Advanced Optical Materials, 11, 2203118(2023).
[105] Ling X H, Zhou X X, Huang K et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics, 80, 066401(2017).
[106] Kim M, Yang Y, Lee D et al. Spin hall effect of light: from fundamentals to recent advancements[J]. Laser & Photonics Reviews, 17, 2200046(2023).
[107] Feng J, Wang B, Chen X F. Photonic spin Hall effect in micro- and nano-optics[J]. Acta Optica Sinica, 43, 1623003(2023).
[108] Wang J J, Shi L, Zi J. Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum[J]. Physical Review Letters, 129, 236101(2022).
[109] Wang J J, Zhao M X, Liu W Z et al. Shifting beams at normal incidence via controlling momentum-space geometric phases[J]. Nature Communications, 12, 6046(2021).
[110] Jiang X, Tang J, Li Z F et al. Enhancement of photonic spin Hall effect via bound states in the continuum[J]. Journal of Physics D: Applied Physics, 52, 045401(2019).
[111] Song Y F, Shu Y T, Jiang T et al. Enhanced spin Hall effect of light in the PT-symmetric trilayer structure containing epsilon-near-zero materials[J]. Journal of Physics D: Applied Physics, 56, 175102(2023).
[112] Wu F, Liu T T, Long Y et al. Giant photonic spin Hall effect empowered by polarization-dependent quasibound states in the continuum in compound grating waveguide structures[J]. Physical Review B, 107, 165428(2023).
[113] Zito G, Romano S, Cabrini S et al. Observation of spin-polarized directive coupling of light at bound states in the continuum[J]. Optica, 6, 1305-1312(2019).
[114] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).
[115] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).
[116] Guo Y, Xiao M, Fan S H. Topologically protected complete polarization conversion[J]. Physical Review Letters, 119, 167401(2017).
[117] Overvig A, Alù A. Diffractive nonlocal metasurfaces[J]. Laser & Photonics Reviews, 16, 2100633(2022).
[118] Zhao C, Chen W J, Wei J X et al. Electrically tunable and robust bound states in the continuum enabled by 2D transition metal dichalcogenide[J]. Advanced Optical Materials, 10, 2201634(2022).
[119] Song Q J, Hu J S, Dai S W et al. Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by PT symmetry[J]. Science Advances, 6, eabc1160(2020).
[120] Huang L, Zhang W X, Zhang X D. Moiré quasibound states in the continuum[J]. Physical Review Letters, 128, 253901(2022).
[121] Ma W, Liu Z C, Kudyshev Z A et al. Deep learning for the design of photonic structures[J]. Nature Photonics, 15, 77-90(2021).
[122] Deng R H, Liu W Z, Shi L. Inverse design in photonic crystals[J]. Nanophotonics, 13, 1219-1237(2024).