• Laser & Optoelectronics Progress
  • Vol. 50, Issue 4, 42302 (2013)
Zhang Haosu1、*, Zhu Jun1, Zhu Zhendong1、2, Li Qunqing3, and Jin Guofan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop50.042302 Cite this Article Set citation alerts
    Zhang Haosu, Zhu Jun, Zhu Zhendong, Li Qunqing, Jin Guofan. Bottom-Emitting Surface-Plasmon-Enhanced GaN-LED Based on the Sinusoidal Nano-Gratings[J]. Laser & Optoelectronics Progress, 2013, 50(4): 42302 Copy Citation Text show less
    References

    [1] S. Nakamura, S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes[M]. London: Taylor & Francis, 2000

    [3] Dong-Ho Kim, Chi-O Cho, Yeong-Geun Roh et al.. Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns[J]. Appl. Phys. Lett., 2005, 87(20): 203508

    [4] Liu Hongwei, Kan Qiang, Wang Chunxia et al.. Light extraction enhancement of GaN LED with a two-dimensional photonic crystal slab[J]. Chin. Phys. Lett., 2011, 28(5): 054216

    [5] Hongwei Liu, Qiang Kan, Chunxia Wang et al.. Light extraction of GaN LEDs with 2-D photonic crystal structure[J]. Chin. Opt. Lett., 2009, 7(10): 918~910

    [6] Xiaomin Jin, Bei Zhang, Tao Dai et al.. Optimization of top polymer gratings to improve GaN LEDs light transmission[J]. Chin. Opt. Lett., 2008, 6(10): 788~790

    [7] B. Monemar, J. P. Bergman, G. Pozina et al.. Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well structures[C]. SPIE, 1999, 3624: 168~178

    [8] A. Neogi, C. -W. Lee, H. O. Everitt et al.. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling[J]. Phys. Rev. B, 2000, 66(15): 153305

    [9] I. Gontijo, M. Borodisky, E. Yablonvitch et al.. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons[J]. Phys. Rev. B, 1999, 60(16): 11564~11567

    [10] K. Okamoto, I. Niki, A. Scherer et al.. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy[J]. Appl. Phys. Lett., 2005, 87(7): 071102

    [11] K. Okamoto, I. Niki, A. Shvartser et al.. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nature Mater., 2004, 3(9): 601~605

    [12] Yan Jie, Wang Pei, Lu Yonghua et al.. Process of enhanced emission of light-emitting diode using surface plamons[J]. Chinese J. Quantum Electronics, 2009, 26(1): 1~9

    [13] Lin Yannan> The Study of Luminescence Efficiency of InGaN MQWs by using with Micron Metal Grating[D]. Tai Wan: Tai Wan National University, 2007

    [14] Heinz Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. New York: Springer-Verlag, 1988

    [15] John Morland, Arnold Adams, Paul K. Hansma. Efficiency of light emission from surface plasmons[J]. Phys. Rev. B, 1982, 25(4): 2297~2300

    [16] John M. Lupton, Benjamin J. Matterson, Ifor D. W. Samuel et al.. Bragg scattering from periodically micro-structured light emitting diodes[J]. Appl. Phys. Lett., 2000, 77(21): 3340~3342

    [17] P. K. Hansma. Tunneling Spectroscopy: Capabilities Applications and New Techniques[M]. P. K. Hansma (ed.) New York: Plenum, 1982. Chapter 5

    [18] Kun-Ching Shen, Cheng-Yen Chen, Che-Hao Liao et al.. Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating[C]. OSA/ACP Conference, 2009. TuN5

    [19] Yen-Cheng Lu, Yung-Sheng Chen, Fu-Ji Tsai et al.. Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor[J]. Appl. Phys. Lett., 2009, 94(23): 233113

    [20] Li Lifeng. A User′s Guide to DELTA(Version 1.4): A Computer Program for Modeling Planar, One-Dimensionally Periodic, Multilayer-Coated, Diffraction Gratings[M]. Beijing: Tsinghua University Press, 1993

    [21] J. Chandezon, M. T. Dupuis, G. Cornet et al.. Multicoated gratings: a differential formalism applicable in the entire optical region[J]. J. Opt. Soc. Am., 1982, 72(7): 839~846

    [22] J. Chandezon, D. Maystre, G. Raoult. A new theoretical method for diffraction gratings and its numerical application[J]. J. Opt. (Paris), 1980, 11(4): 235~241

    [23] Marvin J. Weber. Handbook of Optical Materials[M]. Boca Raton: CRC Press, 2003

    CLP Journals

    [1] Tan Xinhui, Cai Wei, Ji Zhichao, Liu Guodong, Meng Tao, Li Wei, Zhang Xinzheng. Light-Induced Gold Nanoparticle Grating and Excitation of Surface Plasmon Polaritons[J]. Chinese Journal of Lasers, 2014, 41(12): 1202011

    [2] Ye Song, Yu Jianli, Wang Xiangxian, Xu Mingkun, Hou Yidong, Zhang Zhiyou, Du Jinglei. Research of the Emission Quenching of Tris-(8-Hydroxyquinoline) Aluminum by Silver Nanoprisms[J]. Acta Optica Sinica, 2014, 34(11): 1116001

    [3] Yin Haifeng, Zeng Chunhua, Zhang Hong. Plasmon Excitation in C60 Fullerene Dimers Connected by a Sodium Atom[J]. Acta Optica Sinica, 2015, 35(2): 224001

    Zhang Haosu, Zhu Jun, Zhu Zhendong, Li Qunqing, Jin Guofan. Bottom-Emitting Surface-Plasmon-Enhanced GaN-LED Based on the Sinusoidal Nano-Gratings[J]. Laser & Optoelectronics Progress, 2013, 50(4): 42302
    Download Citation