[4] J H LAN, J L ZOU, Y S HAO et al. Research progress on unmixing of hyperspectral remote sensing imagery. Journal of Remote Sensing, 22, 13-27(2018).
[5] B RASTI, A ZOUAOUI, J MAIRAL et al. Image processing and machine learning for hyperspectral unmixing: an overview and the HySUPP python package. IEEE Transactions on Geoscience and Remote Sensing, 62, 5517631(2024).
[10] K BERAHMAND, F DANESHFAR, E S SALEHI et al. Autoencoders and their applications in machine learning: a survey. Artif Intell Rev, 57, 10662-10668(2024).
[11] GUO R, WANG W, QI H. Hyperspectral image unmixing using autoencoder cade [C]Wkshop on Hyperspectral Image Signal Processing: Evolution in Remote Sensing, 2015: 14.
[12] PALSSON F, SIGURDSSON J, SVEINSSON J R, et al. Neural wk hyperspectral unmixing with spectral infmation divergence objective [C]IEEE International Geoscience Remote Sensing Symposium (IGARSS), 2017: 755758.
[14] B PALSSON, J SIGURDSSON, J R SVEINSSON et al. Hyperspectral unmixing using a neural network autoencoder. IEEE Access, 6, 25646-25656(2018).
[17] B PALSSON, J R SVEINSSON. , ULFARSSON M O. Spectral-spatial hyperspectral unmixing using multitask learning. IEEE, 7, 148861-148872(2019).
[19] Q JIN, Y MA, X MEI et al. TANet: an unsupervised two-stream autoencoder network for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60, 5506215(2022).
[22] M ZHAO, S SHI, J CHEN et al. A 3-D-CNN framework for hyperspectral unmixing with spectral variability. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2022).
[23] B RASTI, B KOIRALA. SUnCNN: sparse unmixing using unsupervised convolutional neural network. IEEE Geoscience and Remote Sensing Letters, 19, 5508205(2022).
[25] LEI M, LI J, QI L, et al. Hyperspectral unmixing via recurrent neural wk with chain classifier [C]2020 IEEE International Geoscience Remote Sensing Symposium, 2020: 21732176.
[27] P GHOSH, S K ROY, B KOIRALA et al. Hyperspectral unmixing using Transformer network. IEEE Transactions on Geoscience and Remote Sensing, 60, 5535116(2022).
[28] R A BORSOI, T IMBIRIBA, J C M BERMUDEZ. Deep generative endmember modeling: An application to unsupervised spectral unmixing. IEEE Transactions on Computational Imaging, 6, 374-384(2020).
[29] A MIN, Z GUO, H LI et al. JMnet: Joint metric neural network for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60, 5505412(2022).
[30] VILLANI C. The Wasserstein Distances [M]. Germany: Springer, 2009: 93–111.
[31] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial wks [C]Proceedings of the 34th International Conference on Machine Learning, 2017, 70: 214–223.
[33] Z HAN, D HONG, L GAO et al. AutoNAS: Automatic neural architecture search for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60, 3186480(2022).
[34] HAN Z, HONG D, GAO L, et al. EvoNAS: evolvable neural architecture search f hyperspectral unmixing [C]IEEE International Geoscience Remote Sensing Symposium, 2021: 33253328.
[35] M ZHAO, L TANG, J CHEN. Unrolling plug-and-play network for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 63, 5506113(2025).
[36] L ZHU, K QIN, M LI et al. Research on improved stacked sparse autoencoders for mineral hyperspectral endmember extraction. Spectroscopy and Spectral Analysis, 41, 1288-1293(2021).
[38] B RASTI, B KOIRALA, P SCHEUNDERS. HapkeCNN: blind nonlinear unmixing for intimate mixtures using Hapke model and convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 60, 5536315(2022).
[39] M ZHAO, M WANG, J CHEN et al. Hyperspectral unmixing for additive nonlinear models with a 3-D-CNN autoencoder network. IEEE Transactions on Geoscience and Remote Sensing, 60, 5509415(2022).