• Laser & Optoelectronics Progress
  • Vol. 50, Issue 3, 30001 (2013)
Tang Xinchun*, Gao Jiancun, Wang Kun, and Fang Ming
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.030001 Cite this Article Set citation alerts
    Tang Xinchun, Gao Jiancun, Wang Kun, Fang Ming. Generation of a Radially Polarized Light and Its Applications[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30001 Copy Citation Text show less
    References

    [1] A. Ashkin. Acceleration and trapping of particles by radiation pressure[J]. Phys. Rev. Lett., 1970, 24(4): 156~159

    [2] Qiwen Zhan. Trapping metallic Rayleigh particles with radial polarization [J]. Opt. Express, 2004, 12(15): 3377~3382

    [3] V. Niziev, A. Nesterov. Influence of beam polarization on laser cutting efficiency [J]. J. Phys. D, 1999, 32(13): 1455~1461

    [4] M. Meier, V. Romano, T. Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation [J]. Appl. Phys. A, 2007, 86(3): 329~334

    [5] H. Kano, S. Mizuguchi, S. Kawata. Excitation of surface-plasmon polaritons by a focused laser beam [J]. J. Opt. Soc. Am. B, 1998, 15(4): 1381~1386

    [6] Kouyou Watanabe. Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination [J]. Appl. Opt., 2007, 46(22): 4985~4990

    [7] Wan-Chin Kim, No-Cheol Park. Investigation of near-field imaging characteristics of radial polarization for application to optical data storage [J]. Opt. Rev., 2007, 14(4): 236~242

    [8] Gilad M. Lerman, Uriel Levy. Radial polarization interferometer [J]. Opt. Express, 2009, 17(25): 23234~23246

    [9] K. J. Moh, X.-C. Yuan, J. Bu et al.. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams [J]. Appl. Opt., 2007, 46(30): 7544~7557

    [10] Mushiake, Y. Matsumura, K. Nakajima et al.. Generation of radially polarized optical beam mode by laser oscillation[J]. Proc. IEEE, 1972, 60(9): 1107~1109

    [11] Kazuhiro Yonezawa. Generation of a radially polarized laser beam by use of the birefringence of a c-cut NdYVO4 crystal[J]. Opt. Lett., 2006, 31(14): 2151~2153

    [12] I. Moshe. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects[J]. Opt. Lett., 2003, 28(10): 807~809

    [13] Y. Lumer. Use of phase corrector plates to increase the power of radially polarized oscillators[J]. J. Opt. Soc. Am. B, 2010, 27(7): 1337~1342

    [14] Yuichi Kozawa, Shunichi Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Opt. Lett., 2005, 30(22): 3062~3065

    [15] Jian-lang Li, Ken-ichi Ueda, Mitsuru Musha et al.. Efficient excitation of radially and azimuthally polarized Nd3+YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2[J]. Opt. Express, 2008, 16(14): 10841~10848

    [16] Lin Di, Li Jianlang, Xia Kegui. Radially polarized laser with end-pumped and bonded NdYAG crystal[J]. Laser & Optoelectronics Progress, 2010, 47(7): 071405

    [17] J. L. Li, K. I. Ueda, M. Musha et al.. Radially polarized and pulsed output from passively Q-switched NdYAG ceramic microchip laser[J]. Opt. Lett., 2008, 33(22): 2686~2688

    [18] T. Moser, H. Glur, V. Romano. Polarization-selective grating mirrors used in the generation of radial polarization[J]. Appl. Phys. B, 2005, 80(6): 707~713

    [19] Marwan Abdou Ahmed. Multilayer polarizing grating mirror used for the generation of radial polarization in YbYAG thin-disk lasers[J]. Opt. Lett., 2007, 32(22): 3272~3274

    [20] T. Moser, M. A. Ahmed, F. Pigeon. Generation of radially polarized beams in NdYAG lasers with polarization selective mirrors[J]. Laser Phys. Lett., 2004, 1(5): 234~236

    [21] Marwan Abdou Ahmed, Matthias Haefner, Moritz Vogel. High-power radially polarized YbYAG thin-disk laser with high efficiency[J]. Opt. Express, 2011, 19(6): 5093~5104

    [22] Marwan Abdou Ahmed, Joachim Schulz, Andreas Voss. Radially polarized 3-kW beam from a CO2 laser with an intracavity resonant grating mirror[J]. Opt. Lett., 2007, 32(13): 1824~1826

    [23] G. Machavariani, Y. Lumer. Efficient extracavity generation of radially and azimuthally polarized beams[J]. Opt. Lett., 2007, 32(11): 1468~1470

    [24] S. Quabis. Generation of a radially polarized doughnut mode of high quality[J]. Appl. Phys. B, 2005, 81(5): 597~600

    [25] P. B. Hua, W. J. Lai, Yuan Liang Lim. Mimicking optical activity for generating radially polarized light[J]. Opt. Lett., 2007, 32(4): 376~378

    [26] R. Dorn. S. Quabis, G.Leuchs. Sharper focus for a radially polarized light beam[J]. Phys. Rev. Lett., 2003, 91(23): 233901

    [27] Yan Jie, Lu Yonghua, Wang Pei et al.. Study of focal spot of radially polarized beam[J]. Acta Optica Sinica, 2010, 30(12): 3597~3603

    [28] H. Kano, S. Mizuguchi, S. Kawata. Excitation of surface-plasmon polaritons by a focused laser beam[J]. J. Opt. Soc. Am. B, 1998, 15: 1381~1386

    CLP Journals

    [1] Xiu Peng, Jiang Yunshan, Wang Yifang, Kuang Cuifang, Li Shuai, Liu Xu. Measuring Method and Evaluation of Cylindrical Vector Polarized Beams[J]. Acta Optica Sinica, 2014, 34(6): 612002

    [2] Chen Guojun, Zhou Qiaoqiao, Ji Xianming, Yin Jianping. Study on High-Numerical-Aperture-Focused Characteristics of Vector Beam Produced by π Phase Plate[J]. Acta Optica Sinica, 2014, 34(12): 1226001

    [3] [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], Peter Bennett. Filamentation Phenomenon of Different Polarized Femtosecond Laser in PMMA[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123201

    [4] Wang Yifan, Kuang Cuifang, Gu Zhaotai, Li Shuai, Liu Xu. Generation of Polarization-Adjustable Cylindrical Vector Beams Based on Vortex Phase Modulation and Interference[J]. Acta Optica Sinica, 2013, 33(10): 1005001

    Tang Xinchun, Gao Jiancun, Wang Kun, Fang Ming. Generation of a Radially Polarized Light and Its Applications[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30001
    Download Citation