• Acta Optica Sinica
  • Vol. 44, Issue 15, 1513024 (2024)
Hanghang Li1, Zhuang Fan1, Nuo Chen1, Xiaolong Fan1..., Wenchan Dong1,2, Heng Zhou3, Jing Xu1,2,4,* and Xinliang Zhang2,4,**|Show fewer author(s)
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 3School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 4Optics Valley Laboratory, Wuhan 430074, Hubei , China
  • show less
    DOI: 10.3788/AOS240947 Cite this Article Set citation alerts
    Hanghang Li, Zhuang Fan, Nuo Chen, Xiaolong Fan, Wenchan Dong, Heng Zhou, Jing Xu, Xinliang Zhang. Integrated Nonlinear Optical Signal Processing Devices and Applications(Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513024 Copy Citation Text show less
    References

    [1] Dutta R, Rouskas G N. Traffic grooming in WDM networks: past and future[J]. IEEE Network, 16, 46-56(2002).

    [2] Al-Khateeb M, Tan M M, Zhang T T et al. Combating fiber nonlinearity using dual-order Raman amplification and OPC[J]. IEEE Photonics Technology Letters, 31, 877-880(2019).

    [3] Miller D A B, Chemla D S, Eilenberger D J et al. Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures[J]. Applied Physics Letters, 41, 679-681(1982).

    [4] Jackson K P, Newton S A, Moslehi B et al. Optical fiber delay-line signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 33, 193-210(1985).

    [5] Stegeman G I, Wright E M, Finlayson N et al. Third order nonlinear integrated optics[J]. Journal of Lightwave Technology, 6, 953-970(1988).

    [6] Jinno M. Effects of crosstalk and timing jitter on all-optical time-division demultiplexing using a nonlinear fiber Sagnac interferometer switch[J]. IEEE Journal of Quantum Electronics, 30, 2842-2853(1994).

    [7] Durhuus T, Mikkelsen B, Joergensen C et al. All-optical wavelength conversion by semiconductor optical amplifiers[J]. Journal of Lightwave Technology, 14, 942-954(1996).

    [8] Elmirghani J M H, Mouftah H T. All-optical wavelength conversion: technologies and applications in DWDM networks[J]. IEEE Communications Magazine, 38, 86-92(2000).

    [9] Fu S N, Zhong W D, Shum P P et al. All-optical NRZ-OOK-to-RZ-OOK format conversions with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier[J]. Optics Communications, 282, 2143-2146(2009).

    [10] Islam M N. Ultrafast all-optical logic gates based on soliton trapping in fibers[J]. Optics Letters, 14, 1257-1259(1989).

    [11] Jinno M, Matsumoto T. Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams[J]. Optics Letters, 16, 220-222(1991).

    [12] Lucek J K, Smith K. All-optical signal regenerator[J]. Optics Letters, 18, 1226-1228(1993).

    [13] Matsumoto M. Fiber-based all-optical signal regeneration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 738-752(2012).

    [14] Zhong Z L, Wang H X, Ji Y F. All-optical aggregation and de-aggregation between 3× BPSK and 8QAM in HNLF with wavelength preserved[J]. Applied Optics, 59, 1092-1098(2020).

    [15] Cui J B, Tan Y X, Lu G W et al. Across-dimensional optical constellation de-aggregations from QAMs to PAMs in optical transparent networks[J]. Optics & Laser Technology, 175, 110737(2024).

    [16] Slavík R, Parmigiani F, Kakande J et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems[J]. Nature Photonics, 4, 690-695(2010).

    [17] Kakande J, Slavík R, Parmigiani F et al. Multilevel quantization of optical phase in a novel coherent parametric mixer architecture[J]. Nature Photonics, 5, 748-752(2011).

    [18] Chitgarha M R, Khaleghi S, Yilmaz O F et al. Demonstration of channel-spacing-tunable demultiplexing of optical orthogonal-frequency-division-multiplexed subcarriers utilizing reconfigurable all-optical discrete Fourier transform[J]. Optics Letters, 37, 3975-3977(2012).

    [19] Kong D M, Liu Y, Ren Z Q et al. Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands[J]. Nature Communications, 13, 4139(2022).

    [20] Pan W, Jin Q, Li X B et al. All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber[J]. Journal of the Optical Society of America B, 32, 2417-2424(2015).

    [21] Ding Y H, Xu J, Ou H Y et al. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide[J]. Optics Express, 22, 127-135(2014).

    [22] Gong J X, Xu J, Luo M et al. All-optical wavelength conversion for mode division multiplexed superchannels[J]. Optics Express, 24, 8926-8939(2016).

    [23] Yu C Y, Christen L, Luo T et al. All-optical XOR gate using polarization rotation in single highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 17, 1232-1234(2005).

    [24] Minami H, Hirose K, Fukatani T et al. Low-penalty band-switchable multi-band optical cross-connect using PPLN-based inter-band wavelength converters[J]. Journal of Lightwave Technology, 42, 1242-1249(2024).

    [25] Durhuus T, Joergensen C, Mikkelsen B et al. All optical wavelength conversion by SOA's in a Mach-Zehnder configuration[J]. IEEE Photonics Technology Letters, 6, 53-55(1994).

    [26] Dinu M, Quochi F, Garcia H. Third-order nonlinearities in silicon at telecom wavelengths[J]. Applied Physics Letters, 82, 2954-2956(2003).

    [27] Razzari L, Duchesne D, Ferrera M et al. CMOS-compatible integrated optical hyper-parametric oscillator[J]. Nature Photonics, 4, 41-45(2010).

    [28] Ye Z C, Jia H Y, Huang Z J et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits[J]. Photonics Research, 11, 558-568(2023).

    [29] Liu J Q, Raja A S, Karpov M et al. Ultralow-power chip-based soliton microcombs for photonic integration[J]. Optica, 5, 1347-1353(2018).

    [30] Riemensberger J, Kuznetsov N, Liu J Q et al. A photonic integrated continuous-travelling-wave parametric amplifier[J]. Nature, 612, 56-61(2022).

    [31] Stassen E, Kim C J, Kong D M et al. Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators[J]. APL Photonics, 4, 100804(2019).

    [32] Mobini E, Espinosa D H G, Vyas K et al. AlGaAs nonlinear integrated photonics[J]. Micromachines, 13, 991(2022).

    [33] Wang C, Langrock C, Marandi A et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 5, 1438-1441(2018).

    [34] He Y, Yang Q F, Ling J W et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019).

    [35] Xia D, Yang Z L, Zeng P Y et al. Integrated chalcogenide photonics for microresonator soliton combs[J]. Laser & Photonics Reviews, 17, 2200219(2023).

    [36] Zheng Y Z, Sun C Z, Xiong B et al. Integrated gallium nitride nonlinear photonics[J]. Laser & Photonics Reviews, 16, 2100071(2022).

    [37] Wang C L, Li J, Yi A L et al. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform[J]. Light: Science & Applications, 11, 341(2022).

    [38] Lukin D M, Guidry M A, Vučković J. Integrated quantum photonics with silicon carbide: challenges and prospects[J]. PRX Quantum, 1, 020102(2020).

    [39] Wilson D J, Schneider K, Hönl S et al. Integrated gallium phosphide nonlinear photonics[J]. Nature Photonics, 14, 57-62(2020).

    [40] Wang K P, Feng Y Y, Chang C X et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 6, 10530-10535(2014).

    [41] Jiang B Q, Hao Z, Ji Y F et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe[J]. Light: Science & Applications, 9, 63(2020).

    [42] Demetriou G, Bookey H T, Biancalana F et al. Nonlinear optical properties of multilayer graphene in the infrared[J]. Optics Express, 24, 13033-13043(2016).

    [43] Kieninger C, Kutuvantavida Y, Elder D L et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator[J]. Optica, 5, 739-748(2018).

    [44] Koos C, Vorreau P, Vallaitis T et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nature Photonics, 3, 216-219(2009).

    [45] Wang Y H, He S, Gao X Y et al. Enhanced optical nonlinearity in a silicon-organic hybrid slot waveguide for all-optical signal processing[J]. Photonics Research, 10, 50-58(2021).

    [46] Boyd R W[M]. Nonlinear optics(2008).

    [47] Zhang Z L, Gao Y, Li X J et al. Second harmonic generation of laser beams in transverse mode locking states[J]. Advanced Photonics, 4, 026002(2022).

    [48] Ledezma L, Sekine R, Guo Q S et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides[J]. Optica, 9, 303-308(2022).

    [49] Wang C, Xiong X, Andrade N et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides[J]. Optics Express, 25, 6963-6973(2017).

    [50] Ge L C, Chen Y P, Jiang H W et al. Broadband quasi-phase matching in a MgO∶PPLN thin film[J]. Photonics Research, 6, 954-958(2018).

    [51] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics[J]. Nature Photonics, 4, 535-544(2010).

    [52] Wang C L, Fang Z W, Yi A L et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 139(2021).

    [53] Xuan Y, Liu Y, Varghese L T et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation[J]. Optica, 3, 1171-1180(2016).

    [54] Sakamoto T, Lim H C, Kikuchi K. All-optical polarization-insensitive time-division demultiplexer using a nonlinear optical loop mirror with a pair of short polarization-maintaining fibers[J]. IEEE Photonics Technology Letters, 14, 1737-1739(2002).

    [55] Boes A, Chang L, Langrock C et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 379, eabj4396(2023).

    [56] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).

    [57] Wang C, Zhang M, Stern B et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 26, 1547-1555(2018).

    [58] Wei J J, Hu Z H, Zhang M M et al. All-optical wavelength conversion of a 92-Gb/s 16-QAM signal within the C-band in a single thin-film PPLN waveguide[J]. Optics Express, 30, 30564-30573(2022).

    [59] Shao L B, Yu M J, Maity S et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 6, 1498-1505(2019).

    [60] Jankowski M, Langrock C, Desiatov B et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 7, 40-46(2020).

    [61] Matsuo S, Uenohara H. Wide wavelength selectable and high frequency precision of all-optical wavelength conversion using pump light generated from optical combs and SSB modulation[J]. Journal of Lightwave Technology, 40, 7006-7013(2022).

    [62] Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019).

    [63] Guo Q S, Sekine R, Ledezma L et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics[J]. Nature Photonics, 16, 625-631(2022).

    [64] Ma Z H, Chen J Y, Li Z et al. Ultrabright quantum photon sources on chip[J]. Physical Review Letters, 125, 263602(2020).

    [65] Guo X, Zou C L, Jung H et al. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes[J]. Physical Review Letters, 117, 123902(2016).

    [66] Cazzanelli M, Bianco F, Borga E et al. Second-harmonic generation in silicon waveguides strained by silicon nitride[J]. Nature Materials, 11, 148-154(2012).

    [67] Timurdogan E, Poulton C V, Byrd M J et al. Electric field-induced second-order nonlinear optical effects in silicon waveguides[J]. Nature Photonics, 11, 200-206(2017).

    [68] Heydari D, Cătuneanu M, Ng E et al. Degenerate optical parametric amplification in CMOS silicon[J]. Optica, 10, 430-437(2023).

    [69] Bauters J F, Heck M J R, John D D et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding[J]. Optics Express, 19, 24090-24101(2011).

    [70] Puckett M W, Liu K K, Chauhan N et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth[J]. Nature Communications, 12, 934(2021).

    [71] Zhao P, He Z L, Shekhawat V et al. 100-Gbps per-channel all-optical wavelength conversion without pre-amplifiers based on an integrated nanophotonic platform[J]. Nanophotonics, 12, 3427-3434(2023).

    [72] Pfeiffer M H P, Kordts A, Brasch V et al. Photonic damascence process for high-Q SiN microresonator fabrication for nonlinear photonics[C], STh3G.5(2015).

    [73] Zheng X, Chen R Z, Shi G et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements[J]. Optics Letters, 40, 3480-3483(2015).

    [74] Liu B, Zhou K. Recent progress on graphene-analogous 2D nanomaterials: properties, modeling and applications[J]. Progress in Materials Science, 100, 99-169(2019).

    [75] Wang K P, Szydłowska B M, Wang G Z et al. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared[J]. ACS Nano, 10, 6923-6932(2016).

    [76] Ding M F, Zhang M, Hong S H et al. High-efficiency four-wave mixing in low-loss silicon photonic spiral waveguides beyond the singlemode regime[J]. Optics Express, 30, 16362-16373(2022).

    [77] Ong J R, Kumar R, Aguinaldo R et al. Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal[J]. IEEE Photonics Technology Letters, 25, 1699-1702(2013).

    [78] Pu M H, Hu H, Ottaviano L et al. Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing[J]. Laser & Photonics Reviews, 12, 1800111(2018).

    [79] Sackey I, Gajda A, Peczek A et al. 1.024 Tb/s wavelength conversion in a silicon waveguide with reverse-biased p-i-n junction[J]. Optics Express, 25, 21229-21240(2017).

    [80] Almeida V R, Xu Q F, Barrios C A et al. Guiding and confining light in void nanostructure[J]. Optics Letters, 29, 1209-1211(2004).

    [81] Wu J Y, Yang Y Y, Qu Y et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics[J]. Small, 16, 1906563(2020).

    [82] Yu Z J, Xi X, Ma J W et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 6, 1342-1348(2019).

    [83] Li X S, Ma J T, Liu S F et al. Efficient second harmonic generation by harnessing bound states in the continuum in semi-nonlinear etchless lithium niobate waveguides[J]. Light: Science & Applications, 11, 317(2022).

    [84] Morichetti F, Canciamilla A, Ferrari C et al. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion[J]. Nature Communications, 2, 296(2011).

    [85] Li D Y, Chang W J, Liu C et al. Broadband wavelength conversion based on parallel-coupled micro-ring resonators[J]. IEEE Photonics Technology Letters, 30, 1559-1562(2018).

    [86] Kim C, Lu X D, Kong D M et al. Parity-time symmetry enabled ultra-efficient nonlinear optical signal processing[J]. eLight, 4, 6(2024).

    [87] Corcoran B, Pelusi M D, Monat C et al. Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide[J]. Optics Letters, 36, 1728-1730(2011).

    [88] Monat C, Grillet C, Collins M et al. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide[J]. Nature Communications, 5, 3246(2014).

    [89] Xu X Y, Wu J Y, Shoeiby M et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source[J]. APL Photonics, 2, 096104(2017).

    [90] Sun S M, Wang B C, Liu K K et al. Integrated optical frequency division for microwave and mmWave generation[J]. Nature, 627, 540-545(2024).

    [91] Zhao Y, Jang J K, Beals G J et al. All-optical frequency division on-chip using a single laser[J]. Nature, 627, 546-552(2024).

    [92] Pfeifle J, Brasch V, Lauermann M et al. Coherent terabit communications with microresonator Kerr frequency combs[J]. Nature Photonics, 8, 375-380(2014).

    [93] Marin-Palomo P, Kemal J N, Karpov M et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274-279(2017).

    [94] Riemensberger J, Lukashchuk A, Karpov M et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 581, 164-170(2020).

    [95] Han X J, Ke H C, Wen H S et al. Towards a photonic integrated all-optical phase regenerator[J]. Optics Letters, 48, 3965-3968(2023).

    [96] Schröder J, Du L B, Roelens M A F et al. Reconfigurable all-optical discrete Fourier transform in a wavelength selective switch for optical OFDM demultiplexing[C], OTh1G.6(2012).

    [97] Gu W T, Gao X Y, Dong W C et al. All-optical complex-valued convolution based on four-wave mixing[J]. Optica, 11, 64-72(2024).

    [98] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).

    [99] Herr T, Brasch V, Jost J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).

    [100] Chang L, Xie W Q, Shu H W et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).

    [101] Cole D C, Lamb E S, Del’Haye P et al. Soliton crystals in Kerr resonators[J]. Nature Photonics, 11, 671-676(2017).

    [102] Griffith A G, Lau R K W, Cardenas J et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 6299(2015).

    [103] Jung H, Xiong C, Fong K Y et al. Optical frequency comb generation from aluminum nitride microring resonator[J]. Optics Letters, 38, 2810-2813(2013).

    [104] Del’Haye P, Herr T, Gavartin E et al. Octave spanning tunable frequency comb from a microresonator[J]. Physical Review Letters, 107, 063901(2011).

    [105] Hu Y W, Yu M J, Buscaino B et al. High-efficiency and broadband on-chip electro-optic frequency comb generators[J]. Nature Photonics, 16, 679-685(2022).

    [106] Wang T L, Chen H W, Xie S Z et al. All-optical up-conversion for 2.5-Gb/s signals in ROF systems based on FWM effect in HNLF[J]. Chinese Optics Letters, 8, 1037-1039(2010).

    [107] Dong J J, Zhang X L, Xu J et al. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter[J]. Optics Express, 15, 2907-2914(2007).

    [108] Huang Z Y, Cao T, Chen L et al. Monolithic integrated chip with SOA and tunable DI for multichannel all-optical signal processing[J]. IEEE Photonics Journal, 10, 6600709(2018).

    [109] Andrekson P A, Karlsson M. Fiber-based phase-sensitive optical amplifiers and their applications[J]. Advances in Optics and Photonics, 12, 367-428(2020).

    [110] Zhao P, Karlsson M, Andrekson P A. Low-noise integrated phase-sensitive waveguide parametric amplifiers[J]. Journal of Lightwave Technology, 40, 128-135(2022).

    [111] Yoo S J B. Wavelength conversion technologies for WDM network applications[J]. Journal of Lightwave Technology, 14, 955-966(1996).

    [112] Kato T, Muranaka H, Tanaka Y et al. S+C+L-band WDM transmission using 400-Gb/s real-time transceivers extended by PPLN-based wavelength converter[C](2022).

    [113] Murai H, Kanda Y, Kagawa M et al. Regenerative SPM-based wavelength conversion and field demonstration of 160-Gb/s all-optical 3R operation[J]. Journal of Lightwave Technology, 28, 910-921(2010).

    [114] Hajomer A A E, Presi M, Andriolli N et al. On-chip all-optical wavelength conversion of PAM-4 signals using an integrated SOA-based turbo-switch circuit[J]. Journal of Lightwave Technology, 37, 3956-3962(2019).

    [115] Astar W, Driscoll J B, Liu X P et al. Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting[J]. Journal of Lightwave Technology, 28, 2499-2511(2010).

    [116] Ciaramella E. Wavelength conversion and all-optical regeneration: achievements and open issues[J]. Journal of Lightwave Technology, 30, 572-582(2012).

    [117] Lee J H, Nagashima T, Hasegawa T et al. Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre[J]. Electronics Letters, 41, 918-919(2005).

    [118] Lu G W, Shinada S, Furukawa H et al. 160-Gb/s tunable all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a linear-chirped PPLN waveguide[C], OWP3(2010).

    [119] Aso O, Arai S I, Yagi T et al. Broadband four-wave mixing generation in short optical fibres[J]. Electronics Letters, 36, 709-711(2000).

    [120] Li C, Luo M, He Z X et al. Phase noise canceled polarization-insensitive all-optical wavelength conversion of 557-Gb/s PDM-OFDM signal using coherent dual-pump[J]. Journal of Lightwave Technology, 33, 2848-2854(2015).

    [121] Chen B B, Zhao Y, Tan H Y et al. Broadband wavelength conversion for hybrid multiplexing signals based on a parallel dispersion-engineered silicon waveguide[J]. IEEE Photonics Journal, 15, 3000107(2023).

    [122] Ronniger G, Sackey I, Schmidt-Langhorst C et al. Optimization and performance evaluation of single-mode SOI waveguides for ultra-broadband C-to-S wavelength conversion[J]. Journal of Lightwave Technology, 41, 3898-3907(2023).

    [123] Lei Z S, Xie W Q, Wei W Q et al. Over 100 nm wavelength conversion bandwidth with high efficiency on AlGaAsOI nonlinear waveguides[C], Th1D.6(2024).

    [124] Qin J, Shu H W, Chang L et al. On-chip high-efficiency wavelength multicasting of PAM3/PAM4 signals using low-loss AlGaAs-on-insulator nanowaveguides[J]. Optics Letters, 45, 4539-4542(2020).

    [125] Absil P P, Hryniewicz J V, Little B E et al. Wavelength conversion in GaAs micro-ring resonators[J]. Optics Letters, 25, 554-556(2000).

    [126] Hu Y W, Yu M J, Zhu D et al. On-chip electro-optic frequency shifters and beam splitters[J]. Nature, 599, 587-593(2021).

    [127] Cui J B, Wang H X, Ji Y F. Optical modulation format conversion from one QPSK to one BPSK with information-integrity-employing phase-sensitive amplifier[J]. Applied Optics, 56, 5307-5312(2017).

    [128] Fallahpour A, Mohajerin-Ariaei A, Almaiman A et al. Demonstration of 30 Gbit/s QPSK-to-PAM4 data-format and wavelength conversion to enable all-optical gateway from long-haul to datacenter[C](2018).

    [129] Wu X, Li X F, Ren L et al. QPSK to BPSK modulation format conversion by phase-sensitive parametric amplification in multi-slot waveguides[J]. Applied Optics, 61, 9609-9615(2022).

    [130] Cui J B, Ji Y F, Lu G W et al. 2D-to-1D constellation reforming using phase-sensitive amplifier-based constellation squeezing and shifting[J]. Optics Express, 29, 3724-3737(2021).

    [131] Cui J B, Lu G W, Wang H X et al. On-chip optical vector quadrature de-multiplexer proposal for QAM de-aggregation by single bi-directional SOA-based phase-sensitive amplifier[J]. IEEE Access, 7, 763-772(2018).

    [132] Cui J B, Ji Y F, Lu G W et al. Optical format interconversion nodes between OOK and QPSK enabled by a reconfigurable two-dimensional vector mover[J]. Optics Express, 30, 32577-32589(2022).

    [133] Kuznetsov N, Nardi A, Davydova A et al. An integrated gallium phosphide travelling-wave optical parametric amplifier[C], Th1D.3(2024).

    [134] Ye Z C, Zhao P, Twayana K et al. Overcoming the quantum limit of optical amplification in monolithic waveguides[J]. Science Advances, 7, eabi8150(2021).

    [135] Yang Z H, Dong W C, Fan Z et al. 40 Gb/s multimode all-optical regenerator based on the low-loss silicon-based nanowaveguide[J]. Optics Express, 32, 6507-6519(2024).

    [136] Long Y, Wang A D, Zhou L J et al. All-optical wavelength conversion and signal regeneration of PAM-4 signal using a silicon waveguide[J]. Optics Express, 24, 7158-7167(2016).

    [137] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits[J]. Nature, 586, 207-216(2020).

    [138] Touch J, Badawy A H, Sorger V J. Optical computing[J]. Nanophotonics, 6, 503-505(2017).

    [139] Zhang L, Ji R Q, Jia L X et al. Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators[J]. Optics Letters, 35, 1620-1622(2010).

    [140] Ying Z F, Feng C H, Zhao Z et al. Integrated multi-operand electro-optic logic gates for optical computing[J]. Applied Physics Letters, 115, 171104(2019).

    [141] Tian Y H, Zhao Y P, Chen W J et al. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators[J]. Optics Express, 23, 26342-26355(2015).

    [142] Tian Y H, Liu Z L, Xiao H F et al. Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrier-injection micro-ring resonators[J]. Scientific Reports, 7, 6410(2017).

    [143] Ying Z F, Wang Z, Zhao Z et al. Silicon microdisk-based full adders for optical computing[J]. Optics Letters, 43, 983-986(2018).

    [144] Ying Z F, Feng C H, Zhao Z et al. Electronic-photonic arithmetic logic unit for high-speed computing[J]. Nature Communications, 11, 2154(2020).

    [145] Feng C H, Ying Z F, Zhao Z et al. Toward high-speed and energy-efficient computing: a WDM-based scalable on-chip silicon integrated optical comparator[J]. Laser & Photonics Reviews, 15, 2000275(2021).

    [146] Lei L, Dong J J, Yu Y et al. All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers[J]. Journal of Lightwave Technology, 30, 3532-3539(2012).

    [147] Cheng Z W, Dong J J, Zhang X L. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity[J]. Optics Letters, 45, 2363-2366(2020).

    [148] Soref R, De Leonardis F, Passaro V M N. Compact resonant 2×2 crossbar switch using three coupled waveguides with a central nanobeam[J]. Optics Express, 29, 8751-8762(2021).

    [149] Shamir J. Parallel optical logic operations on reversible networks[J]. Optics Communications, 291, 133-137(2013).

    [150] Chan K, Chan C K, Chen L K et al. Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs[J]. IEEE Photonics Technology Letters, 16, 897-899(2004).

    [151] Dai B, Shimizu S, Wang X et al. Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers[J]. IEEE Photonics Technology Letters, 25, 91-93(2013).

    [152] Han B C, Liu Y. All-optical reconfigurable non-inverted logic gates with a single semiconductor optical amplifier[J]. AIP Advances, 9, 015007(2019).

    [153] Bogoni A, Wu X X, Fazal I et al. 160 Gb/s time-domain channel extraction/insertion and all-optical logic operations exploiting a single PPLN waveguide[J]. Journal of Lightwave Technology, 27, 4221-4227(2009).

    [154] Shen J, Yu S, Liao P et al. All-optical full-adder based on cascaded PPLN waveguides[J]. IEEE Journal of Quantum Electronics, 47, 1195-1200(2011).

    [155] Mikroulis S, Simos H, Roditi E et al. Ultrafast all-optical AND logic operation based on four-wave mixing in a passive InGaAsP-InP microring resonator[J]. IEEE Photonics Technology Letters, 17, 1878-1880(2005).

    [156] Vo T D, Pant R, Pelusi M D et al. Photonic chip based all-optical logic gate for 40 Gbit/s and 160 Gbit/s DPSK signals[C](2010).

    [157] Li F, Vo T D, Husko C et al. All-optical XOR logic gate for 40 Gb/s DPSK signals via FWM in a silicon nanowire[C], 593-594(2011).

    [158] Xiong M, Lei L, Ding Y H et al. All-optical 10 Gb/s AND logic gate in a silicon microring resonator[J]. Optics Express, 21, 25772-25779(2013).

    [159] Wang J M, Luo M, Qiu Y et al. Dual-channel AND logic gate based on four-wave mixing in a multimode silicon waveguide[J]. IEEE Photonics Journal, 9, 7802806(2017).

    [160] Hu Y H, Yang Z H, Chen N et al. 3×40 Gbit/s all-optical logic operation based on low-loss triple-mode silicon waveguide[J]. Micromachines, 13, 90(2022).

    [161] Xu J, Zhang X L, Zhang Y et al. Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments[J]. Journal of Lightwave Technology, 27, 5268-5275(2009).

    [162] Gao X Y, Gu W T, Dong W C et al. Seven-channel all-optical reconfigurable canonical logic units multicasting at 40 Gb/s based on a nonlinearity-enhanced silicon waveguide[J]. Optics Express, 30, 32650-32659(2022).

    [163] Khaleghi S, Yilmaz O F, Chitgarha M R et al. High-speed correlation and equalization using a continuously tunable all-optical tapped delay line[J]. IEEE Photonics Journal, 4, 1220-1235(2012).

    [164] Khaleghi S, Chitgarha M R, Ziyadi M et al. A tunable optical tapped-delay-line that simultaneously and independently processes multiple input WDM data signals[C], OTh4D.2(2013).

    [165] Chitgarha M R, Tur M, Langrock C et al. Reconfigurable 2-D WDM optical tapped-delay-line to correlate 20 Gbaud QPSK data[C], 207-209(2013).

    [166] Silverstone J W, Bonneau D, O’Brien J L et al. Silicon quantum photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 390-402(2016).

    [167] Walls D F, Milburn G J[M]. Quantum optics(2008).

    [168] Lin Q, Agrawal G P. Silicon waveguides for creating quantum-correlated photon pairs[J]. Optics Letters, 31, 3140-3142(2006).

    [169] Yang Z S, Chak P, Bristow A D et al. Enhanced second-harmonic generation in AlGaAs microring resonators[J]. Optics Letters, 32, 826-828(2007).

    [170] Lanco L, Ducci S, Likforman J P et al. Semiconductor waveguide source of counterpropagating twin photons[J]. Physical Review Letters, 97, 173901(2006).

    [171] Helt L G, Yang Z S, Liscidini M et al. Spontaneous four-wave mixing in microring resonators[J]. Optics Letters, 35, 3006-3008(2010).

    [172] Azzini S, Grassani D, Strain M J et al. Ultra-low power generation of twin photons in a compact silicon ring resonator[J]. Optics Express, 20, 23100-23107(2012).

    [173] Christensen J B, McKinstrie C J, Rottwitt K. Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing[J]. Physical Review A, 94, 013819(2016).

    [174] Imany P, Jaramillo-Villegas J A, Odele O D et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator[J]. Optics Express, 26, 1825-1840(2018).

    [175] Steiner T J, Castro J E, Chang L et al. Ultra-bright entangled-photon pair generation from an AlGaAs-on-insulator microring resonator[J]. PRX Quantum, 2, 010337(2021).

    [176] Liu Y W, Wu C, Gu X W et al. High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring[J]. Optics Letters, 45, 73-76(2020).

    [177] Dutt A, Luke K, Manipatruni S et al. On-chip optical squeezing[J]. Physical Review Applied, 3, 044005(2015).

    [178] Chembo Y K. Quantum dynamics of Kerr optical frequency combs below and above threshold: spontaneous four-wave mixing, entanglement, and squeezed states of light[J]. Physical Review A, 93, 033820(2016).

    [179] Zhao Y, Okawachi Y, Jang J K et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip[J]. Physical Review Letters, 124, 193601(2020).

    [180] Zhang Y, Menotti M, Tan K et al. Squeezed light from a nanophotonic molecule[J]. Nature Communications, 12, 2233(2021).

    [181] Tao Z H, Shen B T, Li W C et al. Versatile photonic molecule switch in multimode microresonators[J]. Light: Science & Applications, 13, 51(2024).

    [182] Feng H K, Ge T, Guo X Q et al. Integrated lithium niobate microwave photonic processing engine[J]. Nature, 627, 80-87(2024).

    Hanghang Li, Zhuang Fan, Nuo Chen, Xiaolong Fan, Wenchan Dong, Heng Zhou, Jing Xu, Xinliang Zhang. Integrated Nonlinear Optical Signal Processing Devices and Applications(Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513024
    Download Citation