• Photonics Research
  • Vol. 10, Issue 9, 2008 (2022)
Xuan Cong1, Hongxin Zeng1, Shiqi Wang1, Qiwu Shi2, Shixiong Liang3, Jiandong Sun4, Sen Gong1、2, Feng Lan1、5, Ziqiang Yang1、5, and Yaxin Zhang1、5、*
Author Affiliations
  • 1Terahertz Science and Technology Research Center, University of Electronic Science and Technology of China, Chengdu 610000, China
  • 2College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
  • 3National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
  • 4Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
  • 5Yangtze Delta Region Institute (HuZhou), University of Electronic Science and Technology of China, Huzhou 313001, China
  • show less
    DOI: 10.1364/PRJ.453496 Cite this Article Set citation alerts
    Xuan Cong, Hongxin Zeng, Shiqi Wang, Qiwu Shi, Shixiong Liang, Jiandong Sun, Sen Gong, Feng Lan, Ziqiang Yang, Yaxin Zhang. Dynamic bifunctional THz metasurface via dual-mode decoupling[J]. Photonics Research, 2022, 10(9): 2008 Copy Citation Text show less
    References

    [1] D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, X. Chen. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [2] L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, C.-W. Qiu. Noninterleaved metasurface for (26–1) spin- and wavelength-encoded holograms. Nano Lett., 18, 8016-8024(2018).

    [3] X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, W. Zhang. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater., 7, 1900175(2019).

    [4] Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, Q. Wu. Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region. Photon. Res., 7, 80-88(2019).

    [5] X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, L. Chen. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photon. Rev., 13, 1800081(2019).

    [6] L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, J. Hu. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun., 9, 1481(2018).

    [7] W. Wang, L. V. Besteiro, T. Liu, C. Wu, J. Sun, P. Yu, L. Chang, Z. Wang, A. O. Govorov. Generation of hot electrons with chiral metamaterial perfect absorbers: giant optical chirality for polarization-sensitive photochemistry. ACS Photon., 6, 3241-3252(2019).

    [8] A. Ghobadi, H. Hajian, B. Butun, E. Ozbay. Strong light–matter interaction in lithography-free planar metamaterial perfect absorbers. ACS Photon., 5, 4203-4221(2018).

    [9] B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, K. Aydin. Chiral-selective plasmonic metasurface absorbers operating at visible frequencies. IEEE Photon. Technol. Lett., 29, 295-298(2017).

    [10] Y. Ren, T. Zhou, C. Jiang, B. Tang. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Opt. Express, 29, 7666-7679(2021).

    [11] Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, W. Zhang. A broadband metasurface-based terahertz flat-lens array. Adv. Opt. Mater., 3, 779-785(2015).

    [12] Z. Wang, T. Yang, Y. Zhang, Q. Ou, H. Lin, Q. Zhang, H. Chen, H. Y. Hoh, B. Jia, Q. Bao. Flat lenses based on 2D perovskite nanosheets. Adv. Mater., 32, 2001388(2020).

    [13] X.-T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, H. Butt. Graphene-based ultrathin flat lenses. ACS Photon., 2, 200-207(2015).

    [14] F. Ding, Y. Chen, S. I. Bozhevolnyi. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting. Photon. Res., 8, 707-714(2020).

    [15] W. Ma, D. Jia, X. Yu, Y. Feng, Y. Zhao. Reflective gradient metasurfaces for polarization-independent light focusing at normal or oblique incidence. Appl. Phys. Lett., 108, 071111(2016).

    [16] C. Zheng, J. Li, G. Wang, J. Li, S. Wang, M. Li, H. Zhao, Z. Yue, Y. Zhang, Y. Zhang, J. Yao. All-dielectric chiral coding metasurface based on spin-decoupling in terahertz band. Nanophotonics, 10, 1347-1355(2021).

    [17] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [18] J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [19] B. Yao, X. Zang, Y. Zhu, D. Yu, J. Xie, L. Chen, S. Han, Y. Zhu, S. Zhuang. Spin-decoupled metalens with intensity-tunable multiple focal points. Photon. Res., 9, 1019-1032(2021).

    [20] G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, Y. Feng. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion. Phys. Rev. Appl., 11, 044043(2019).

    [21] Y. Xu, Q. Li, X. Zhang, M. Wei, Q. Xu, Q. Wang, H. Zhang, W. Zhang, C. Hu, Z. Zhang, C. Zhang, X. Zhang, J. Han, W. Zhang. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photon., 6, 2933-2941(2019).

    [22] L. Chen, Q. Ma, Q. F. Nie, Q. R. Hong, H. Y. Cui, Y. Ruan, T. J. Cui. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photon. Res., 9, 116-124(2021).

    [23] S. J. Li, Y. B. Li, L. Zhang, Z. J. Luo, B. W. Han, R. Q. Li, X. Y. Cao, Q. Cheng, T. J. Cui. Programmable controls to scattering properties of a radiation array. Laser Photon. Rev., 15, 2000449(2021).

    [24] W. Tang, J. Y. Dai, M. Chen, X. Li, Q. Cheng, S. Jin, K. Wong, T. J. Cui. Programmable metasurface-based RF chain-free 8PSK wireless transmitter. Electron. Lett., 55, 417-420(2019).

    [25] J. Zhao, X. Yang, J. Y. Dai, Q. Cheng, X. Li, N. H. Qi, J. C. Ke, G. D. Bai, S. Liu, S. Jin, A. Alù, T. J. Cui. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 6, 231-238(2019).

    [26] W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, T. J. Cui. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans. Wirel. Commun., 20, 421-439(2021).

    [27] P. Ding, Y. Li, L. Shao, X. Tian, J. Wang, C. Fan. Graphene aperture-based metalens for dynamic focusing of terahertz waves. Opt. Express, 26, 28038-28050(2018).

    [28] J. Huang, B. Hu, K. Muhammad Ismail, W. Liu, J. Liu. Graphene-enabled active terahertz focusing with wide tuning range. J. Phys. D, 54, 385104(2021).

    [29] W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, Y. Wang. Graphene-enabled electrically controlled terahertz meta-lens. Photon. Res., 6, 703-708(2018).

    [30] B. Tang, Y. Ren. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration. Phys. Chem. Chem. Phys., 24, 8408-8414(2022).

    [31] S. Zhou, Z. Shen, X. Li, S. Ge, Y. Lu, W. Hu. Liquid crystal integrated metalens with dynamic focusing property. Opt. Lett., 45, 4324-4327(2020).

    [32] Z. Shen, S. Zhou, X. Li, S. Ge, P. Chen, W. Hu, Y. Lu. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photon., 2, 036002(2020).

    [33] Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, W. Hu. Liquid crystal tunable terahertz lens with spin-selected focusing property. Opt. Express, 27, 8800-8807(2019).

    [34] Z. Shen, M. Tang, P. Chen, S. Zhou, S. Ge, W. Duan, T. Wei, X. Liang, W. Hu, Y. Lu. Planar terahertz photonics mediated by liquid crystal polymers. Adv. Opt. Mater., 8, 1902124(2020).

    [35] C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, P. Wu. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials. Phys. Rev. Appl., 11, 054016(2019).

    [36] B. K. Shrewsbury, A. M. Morsy, M. L. Povinelli. Multilayer planar structure for optimized passive thermal homeostasis [Invited]. Opt. Mater. Express, 12, 1442-1449(2022).

    [37] J.-L. Fang, L. Qu, H.-L. Yi. Thermal switching of near-field radiative heat transfer between nanoparticles via multilayered surface modes. Phys. Rev. Appl., 17, 034040(2022).

    [38] K. Nishikawa, M. Yoshimura, Y. Watanabe. Growth of nanostructured VO2 via controlling oxidation of V thin films: morphology and phase transition properties. J. Appl. Phys., 129, 185303(2021).

    [39] K. Nishikawa, M. Yoshimura, Y. Watanabe. Phase transition behavior in nanostructured VO2 with M1, M2, and R phases observed via temperature-dependent XRD measurements. J. Vac. Sci. Technol. A, 40, 033401(2022).

    [40] Q. Shi, W. Huang, T. Lu, Y. Zhang, F. Yue, S. Qiao, Y. Xiao. Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range. Appl. Phys. Lett., 104, 071903(2014).

    [41] H. Li, H. Djaoued, J. Robichaud, Y. Djaoued. A pleasant blue-green colored 2D vanadium dioxide inverse opal monolayer: large area fabrication and its thermochromic application. J. Mater. Chem. C, 8, 11572-11580(2020).

    [42] W. Kou, W. Shi, Y. Zhang, Z. Yang, T. Chen, J. Gu, X. Zhang, Q. Shi, S. Liang, F. Lan, H. Zeng, Z. Yang. Terahertz switchable focusing planar lens with a nanoscale vanadium dioxide integrated metasurface. IEEE Trans. Terahertz Sci. Technol., 12, 13-22(2021).

    [43] F. Ding, S. Zhong, S. I. Bozhevolnyi. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv. Opt. Mater., 6, 1701204(2018).

    [44] Y. Ren, B. Tang. Switchable multi-functional VO2-integrated metamaterial devices in the terahertz region. J. Lightwave Technol., 39, 5864-5868(2021).

    [45] J. Huang, J. Li, Y. Yang, J. Li, J. Li, Y. Zhang, J. Yao. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide. Opt. Express, 28, 7018-7027(2020).

    [46] M. Mao, Y. Liang, R. Liang, L. Zhao, N. Xu, J. Guo, F. Wang, H. Meng, H. Liu, Z. Wei. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: perfect absorber and highly efficient polarization converter. Nanomaterials, 9, 1101(2019).

    [47] H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, D. H. Kim. Mid-infrared properties of a VO2 film near the metal-insulator transition. Phys. Rev. B, 54, 4621-4628(1996).

    [48] C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett., 104, 253902(2010).

    [49] T. Wang, H. Zhang, Y. Zhang, Y. Zhang, M. Cao. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide. Opt. Express, 28, 17434-17448(2020).

    [50] J. Zhao, J. Song, T. Xu, T. Yang, J. Zhou. Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface. Opt. Express, 27, 9773-9781(2019).

    [51] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [52] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [53] V. G. Golubev, V. Yu. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, E. B. Shadrin. Phase transition-governed opal-VO2 photonic crystal. Appl. Phys. Lett., 79, 2127-2129(2001).

    Xuan Cong, Hongxin Zeng, Shiqi Wang, Qiwu Shi, Shixiong Liang, Jiandong Sun, Sen Gong, Feng Lan, Ziqiang Yang, Yaxin Zhang. Dynamic bifunctional THz metasurface via dual-mode decoupling[J]. Photonics Research, 2022, 10(9): 2008
    Download Citation