• Laser & Optoelectronics Progress
  • Vol. 54, Issue 11, 112802 (2017)
Cheng Xiaolong1, Cheng Xiaojun2, Li Quan2, and Xu Wenbing2、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.112802 Cite this Article Set citation alerts
    Cheng Xiaolong, Cheng Xiaojun, Li Quan, Xu Wenbing. Laser Intensity Correction of Terrestrial 3D Laser Scanning Based on Sectional Polynomial Model[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112802 Copy Citation Text show less
    References

    [1] Kaasalainen S, Jaakkola A, Kaasalainen M, et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods[J]. Remote Sensing, 2011, 3(10): 2207-2221.

    [2] Kaasalainen S, Krooks A, Kukko A, et al. Radiometric calibration of terrestrial laser scanners with external reference targets[J]. Remote Sensing, 2009, 1(3): 144-158.

    [3] Pfeifer N, Hfle B, Briese C, et al. Analysis of the backscattered energy in terrestrial laser scanning data[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 1045-1051.

    [4] Tan Kai, Cheng Xiaojun. Correction methods of laser intensity and accuracy of point cloud classification[J]. Journal of Tongji University(Natural Science Edition), 2014, 42(1): 131-135.

    [5] Cheng Xiaolong, Cheng Xiaojun, Guo Wang, et al. Point cloud classification and features extraction of building facades with the corrected laser intensity value[J]. Journal of Tongji University(Natural Science Edition), 2015, 43(9): 1432-1437.

    [6] Tan K, Cheng X J, Cheng X. Modeling hemispherical reflectance for natural surfaces based on terrestrial laser scanning backscattered intensity data[J]. Optics Express, 2016, 24(20): 22971.

    [7] Fang W, Huang X F, Zhang F, et al. Intensity correction of terrestrial laser scanning data by estimating laser transmission function[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(2): 942-951.

    [8] Coren F, Sterzai P. Radiometric correction in laser scanning[J]. International Journal of Remote Sensing, 2006, 27(15): 3097-3104.

    [9] Kaasalainen S, Pyysalo U, Krooks A, et al. Absolute radiometric calibration of ALS intensity data: effects on accuracy and target classification[J]. Sensors, 2011, 11(11): 10586-10602.

    [10] Ding Q, Chen W, King B, et al. Combination of overlap-driven adjustment and Phong model for LiDAR intensity correction[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013, 75: 40-47.

    [11] Tan K, Cheng X. Intensity data correction based on incidence angle and distance for terrestrial laser scanner[J]. Journal of Applied Remote Sensing, 2015, 9: 094094.

    [12] Kim I I, Mc Arthur B, Korevaar E J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications[C]. SPIE, 2001, 4214: 26-37.

    CLP Journals

    [1] Tong Yi, Xia Min, Yang Kecheng, Li Wei, Guo Wenping. Target Reflection Feature Extraction Based on Lidar Intensity Value[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102802

    [2] Deng Xiaolong, Tian Shizhu. Bridge Deformation Detection and Data Processing Based on 3D Laser Scanning[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71201

    [3] Wang Guo, Xiaojun Cheng. Registration Method for Airborne and Terrestrial Light Detection and Ranging Point Cloud Based on Laser Intensity Classification[J]. Laser & Optoelectronics Progress, 2018, 55(6): 062803

    Cheng Xiaolong, Cheng Xiaojun, Li Quan, Xu Wenbing. Laser Intensity Correction of Terrestrial 3D Laser Scanning Based on Sectional Polynomial Model[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112802
    Download Citation