• Journal of Advanced Dielectrics
  • Vol. 13, Issue 1, 2242003 (2023)
Ziyue Ma1、∥, Jianye Zhu1、∥, Jianhua Wu1, Yanhua Hu2, Xiaojie Lou3, Ningning Sun1, Ye Zhao1, Yong Li1、*, and Xihong Hao1、**
Author Affiliations
  • 1Inner Mongolia Key Laboratory of Ferroelectric-Related New Energy Materials and Devices, School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P. R. China
  • 2Department of Chemical Engineering, Ordos Institute of Technology, Ordos, Inner Mongolia 017000, P. R. China
  • 3Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
  • show less
    DOI: 10.1142/S2010135X22420036 Cite this Article
    Ziyue Ma, Jianye Zhu, Jianhua Wu, Yanhua Hu, Xiaojie Lou, Ningning Sun, Ye Zhao, Yong Li, Xihong Hao. Optimization of energy storage properties in (1x)Na0.5Bi0.5TiO3-xSr0.7La0.2TiO3-relaxed ferroelectric ceramics[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242003 Copy Citation Text show less
    References

    [1] L. Zhao, Q. Liu, J. Gao, S. Zhang, J. F. Li. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater., 29, 1701824(2017).

    [2] H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, J. Ryu. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv. Funct. Mater., 28, 1803665(2018).

    [3] Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen, J. Zhai. Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C, 7, 4072(2019).

    [4] H. Pan, A. Kursumovic, Y. H. Lin, C. W. Nan, J. L. MacManus-Driscoll. Dielectric films for high performance capacitive energy storage: Multiscale engineering. Nanoscale, 12, 19582(2020).

    [5] B. Zhang, X. Chen, W. Wu, A. Khesro, P. Liu, M. Mao, K. Song, R. Sun, D. Wang. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem. Eng. J., 446, 136926(2022).

    [6] H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.-T. Zhang, B. Nan, H. Tan, Z.-G. Ye. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C, 8, 16648(2020).

    [7] Z. Fan, L. Li, X. Mei, F. Zhao, H. Li, X. Zhuo, X. Zhang, Y. Lu, L. Zhang, M. Liu. Multilayer ceramic film capacitors for high-performance energy storage: Progress and outlook. J. Mater. Chem. A, 9, 9462(2021).

    [8] D. Li, X. Zeng, Z. Li, Z.-Y. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li. Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram., 10, 675(2021).

    [9] P. Zhao, Z. Cai, L. Wu, C. Zhu, L. Li, X. Wang. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J. Adv. Ceram., 10, 1153(2021).

    [10] D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I. M. Reaney. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A, 6, 4133(2018).

    [11] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci., 19, 291(2009).

    [12] H. Qi, R. Zuo. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A, 7, 3971(2019).

    [13] D. Hu, Z. Pan, X. Zhang, H. Ye, Z. He, M. Wang, S. Xing, J. Zhai, Q. Fu, J. Liu. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics. J. Mater. Chem. C, 8, 591(2020).

    [14] J. Huang, H. Qi, Y. Gao, A. Xie, Y. Zhang, Y. Li, S. Wang, R. Zuo. Expanded linear polarization response and excellent energy-storage properties in (Bi0.5Na0.5)TiO3-KNbO3 relaxor antiferroelectrics with medium permittivity. Chem. Eng. J., 398, 125639(2020).

    [15] X. Zhu, Y. Gao, P. Shi, R. Kang, F. Kang, W. Qiao, J. Zhao, Z. Wang, Y. Yuan, X. Lou. Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3 -based lead-free relaxor ceramics with excellent temperature stability. Nano Energy, 98, 107276(2022).

    [16] T. Li, X. Jiang, J. Li, A. Xie, J. Fu, R. Zuo. Ultrahigh energy-storage performances in lead-free Na0.5Bi0.5TiO3-based relaxor antiferroelectric ceramics through a synergistic design strategy. ACS Appl. Mater. Interfaces, 14, 22263(2022).

    [17] C. Li, J. Liu, W. Bai, S. Wu, P. Zheng, J. Zhang, Z. Pan, J. Zhai. Superior energy storage performance in (Bi0.5Na0.5)TiO3-based lead-free relaxor ferroelectrics for dielectric capacitor application via multiscale optimization design. J. Mater. Chem. A, 10, 9535(2022).

    [18] X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J., 388, 124158(2020).

    [19] J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang, H. Zhou. Realizing ultrahigh recoverable energy density and superior charge–discharge performance in NaNbO3-based lead-free ceramics via a local random field strategy. J. Mater. Chem. C, 8, 3784(2020).

    [20] G. Wang, Z. Lu, J. Li, H. Ji, H. Yang, L. Li, S. Sun, A. Feteira, H. Yang, R. Zuo, D. Wang, I. M. Reaney. Lead-free (Ba,Sr)TiO3–BiFeO3 based multilayer ceramic capacitors with high energy density. J. Eur. Ceram. Soc., 40, 1779(2020).

    [21] X. Meng, Y. Zhao, Y. Li, X. Hao. Simultaneously achieving ultrahigh energy density and power density in PbZrO3-based antiferroelectric ceramics with field-induced multistage phase transition. J. Alloys Compd., 868, 159149(2021).

    [22] W. Wang, Y. Pu, X. Guo, T. Ouyang, Y. Shi, M. Yang, J. Li, R. Shi, G. Liu. Enhanced energy storage properties of lead-free (Ca0.5Sr0.5)1−1.5xLaxTiO3linear dielectric ceramics within a wide temperature range. Ceram. Int., 45, 14684(2019).

    [23] Y. Lin, D. Li, M. Zhang, H. Yang. (Na0.5Bi0.5)0.7 Sr0.3TiO3 modified by Bi(Mg2/3Nb1/3)O3 ceramics with high energy-storage properties and an ultrafast discharge rate. J. Mater. Chem. C, 8, 2258(2020).

    [24] X. Liu, T. Yang, W. Gong. Comprehensively enhanced energy-storage properties in (Pb1−3x/2Lax)(Zr0.995Ti0.005)O3 antiferroelectric ceramics via composition optimization. J.Mater. Chem. C, 9, 12399(2021).

    [25] J. Li, F. Li, Z. Xu, S. Zhang. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater., 30, e1802155(2018).

    [26] P. Chen, W. Cao, T. Li, B. Zhao, J. Zheng, C. Wang. Outstanding energy-storage and charge-discharge performances in Na0.5Bi0.5TiO3 lead-free ceramics via linear additive of Ca0.85Bi0.1TiO3. Chem. Eng. J., 435, 135065(2022).

    [27] X. Qiao, A. Sheng, D. Wu, F. Zhang, B. Chen, P. Liang, J. Wang, X. Chao, Z. Yang. A novel multifunctional ceramic with photoluminescence and outstanding energy storage properties. Chem. Eng. J., 408, 127368(2021).

    [28] Y. Yang, H. Wang, L. Bi, Q. Zheng, G. Fan, W. Jie, D. Lin. High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94 Ba0.06TiO3 ceramics. J. Eur. Ceram. Soc., 39, 3051(2019).

    [29] F. Yan, X. Zhou, X. He, H. Bai, S. Wu, B. Shen, J. Zhai. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy, 75, 105012(2020).

    [30] X. Liu, J. Zhu, Y. Li, T. Yang, X. Hao, W. Gong. High-performance PbZrO3-based antiferroelectric multilayer capacitors based on multiple enhancement strategy. Chem. Eng. J., 446, 136729(2022).

    [31] Z. Ma, Q. Su, J. Zhu, X. Meng, Y. Zhao, G. Xin, Y. Li, X. Hao. Optimization of energy-storage properties for lead-free relaxor-ferroelectric (1-x)Na0.5Bi0.5TiO3-xSr0.7Nd0.2TiO3 ceramics. J. Mater. Sci., 57, 217(2022).

    [32] X. Wang, Y. Fan, A. Mostaed, L. Li, A. Feteira, D. Wang, G. Wang, I. M. Reaney. High discharge energy density in novel K1/2Bi1/2-TiO3-BiFeO3 based relaxor ferroelectrics. J. Eur. Ceram. Soc., 42, 7381(2022).

    [33] A. Khesro, F. A. Khan, R. Muhammad, A. Ali, M. Khan, D. Wang. Energy storage performance of Nd3+doped lead-free BiFeO3-BaTiO3-based lead-free ceramics. Ceram. Int., 48, 29938(2022).

    [34] Q. Xu, M. T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, H. Liu. Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage. Ceram. Int., 42, 9728(2016).

    [35] X. Liu, J. Shi, F. Zhu, H. Du, T. Li, X. Liu, H. Lu. Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy. J. Materiomics, 4, 202(2018).

    [36] S. Zhou, Y. Pu, X. Zhao, T. Ouyang, J. Ji, Q. Zhang, S. Sun, R. Sun, J. Li, D. Wang. Excellent dielectric temperature stability and energy storage performance of NBT-based ceramics by introducing high-entropy oxide. J. Am. Ceram. Soc., 105, 4796(2022).

    Ziyue Ma, Jianye Zhu, Jianhua Wu, Yanhua Hu, Xiaojie Lou, Ningning Sun, Ye Zhao, Yong Li, Xihong Hao. Optimization of energy storage properties in (1x)Na0.5Bi0.5TiO3-xSr0.7La0.2TiO3-relaxed ferroelectric ceramics[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242003
    Download Citation