• Opto-Electronic Engineering
  • Vol. 46, Issue 8, 180577 (2019)
Niu Jinke*, Liang Binming, Zhuang Songlin, and Chen Jiabi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180577 Cite this Article
    Niu Jinke, Liang Binming, Zhuang Songlin, Chen Jiabi. Dual subwavelength imaging based on two-dimensional photonic crystals[J]. Opto-Electronic Engineering, 2019, 46(8): 180577 Copy Citation Text show less
    References

    [1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509.

    [2] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969.

    [3] Kang M, Chen J, Li S M, et al. Optical spin-dependent angular shift in structured metamaterials[J]. Optics Letters, 2011, 36(19): 3942–3944.

    [4] Iyer A K, Eleftheriades G V. Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification[J]. Applied Physics Letters, 2008, 92(13): 131105.

    [5] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79.

    [6] Martin F, Bonache J, Falcone F, et al. Split ring resonator-based left-handed coplanar waveguide[J]. Applied Physics Letters, 2003, 83(22): 4652–4654.

    [7] Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: putting a new twist on light[J]. Nature, 1997, 386(6621): 143–149.

    [8] Mekis A, Chen J C, Kurland I, et al. High transmission through sharp bends in photonic crystal waveguides[J]. Physical Review Letters, 1996, 77(18): 3787–3790.

    [9] Notomi M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap[J]. Physical Review B, 2000, 62(16): 10696–10705.

    [10] Engelen R J P, Sugimoto Y, Watanabe Y, et al. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides[J]. Optics Express, 2006, 14(4): 1658–1672.

    [11] Luo C Y, Johnson S, Joannopoulos J, et al. Subwavelength imaging in photonic crystals[J]. Physical Review B, 2003, 68(4): 045115.

    [12] Jiang L Y, Wu H, Li X Y. Dual-negative-refraction and imaging effects in normal two-dimensional photonic crystals with hexagonal lattices[J]. Optics Letters, 2012, 37(11): 1829–1831.

    [13] Cubukcu E, Aydin K, Ozbay E, et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens[J]. Physical Review Letters, 2003, 91(20): 207401.

    [14] Li Z Y, Lin L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction[J]. Physical Review B, 2003, 68(24): 245110.

    [15] Zheng X R, Jia B H, Lin H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 2015, 6: 8433.

    [16] Li H Y, Wang C T, Luo X G. Planar hyper lens with demagnification for nanolithography[J]. Opto-Electronic Engineering, 2011, 38(5): 35–39, 45.

    [17] Gao L, Liang B M, Wang T, et al. Electro-optic deflector based on negative refraction effect of photonic crystal[J]. Opto-Electronic Engineering, 2016, 43(5): 77–81.

    [18] Zhang X D, Yuan M M, Chang M, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electronic Engineering, 2018, 45(5): 20–28.

    [19] White J G, Amos W B. Confocal microscopy comes of age[J]. Nature, 1987, 328(6126): 183–184.

    [20] Minsky M. Memoir on inventing the confocal scanning microscope[J]. Scanning, 1988, 10(4): 128–138.

    [21] Egger M D. The development of confocal microscopy[J]. Trends in Neurosciences, 1989, 12(1): 11.

    [22] Ziegler D, Papanas N, Zhivov A, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes[J]. Diabetes, 2014, 63(7): 2454–2463.

    Niu Jinke, Liang Binming, Zhuang Songlin, Chen Jiabi. Dual subwavelength imaging based on two-dimensional photonic crystals[J]. Opto-Electronic Engineering, 2019, 46(8): 180577
    Download Citation