• Acta Optica Sinica
  • Vol. 43, Issue 12, 1228004 (2023)
Zhenxing Liu1、2、3, Jianhua Chang1、2、*, Hongxu Li4, Yuanyuan Meng1, Mei Zhou1, and Tengfei Dai1、2
Author Affiliations
  • 1School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 3Department of Information Technology, Taizhou Polytechnic College, Taizhou 225300, Jiangsu, China
  • 4School of Electronic Information Engineering, Wuxi University, Wuxi 214105, Jiangsu, China
  • show less
    DOI: 10.3788/AOS221534 Cite this Article Set citation alerts
    Zhenxing Liu, Jianhua Chang, Hongxu Li, Yuanyuan Meng, Mei Zhou, Tengfei Dai. A Highly Robust Atmospheric Boundary Layer Height Estimation Method Combining K-means and Entropy Weight Method[J]. Acta Optica Sinica, 2023, 43(12): 1228004 Copy Citation Text show less
    References

    [1] Yu S Q, Liu D, Xu J W et al. Statistics and analysis of planetary boundary layer height retrieved by lidar over Jinhua, Hefei, and Lanzhou[J]. Acta Optica Sinica, 41, 1422002(2021).

    [2] Shi Y, Hu F, Fan G Q et al. Multiple technical observations of the atmospheric boundary layer structure of a red-alert haze episode in Beijing[J]. Atmospheric Measurement Techniques, 12, 4887-4901(2019).

    [3] Liu D Y, Yan W L, Kang Z M et al. Boundary-layer features and regional transport process of an extreme haze pollution event in Nanjing, China[J]. Atmospheric Pollution Research, 9, 1088-1099(2018).

    [4] Min J S, Park M S, Chae J H et al. Integrated System for Atmospheric Boundary Layer Height Estimation (ISABLE) using a ceilometer and microwave radiometer[J]. Atmospheric Measurement Techniques, 13, 6965-6987(2020).

    [5] Liu S Y, Liang X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 23, 5790-5809(2010).

    [6] Xiang Y, Zhang T S, Liu J G et al. Evaluation of boundary layer height simulated by WRF mode based on lidar[J]. Chinese Journal of Lasers, 46, 0110002(2019).

    [7] Caicedo V, Rappenglück B, Lefer B et al. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data[J]. Atmospheric Measurement Techniques, 10, 1609-1622(2017).

    [8] Melfi S H, Spinhirne J D, Chou S H et al. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean[J]. Journal of Climate and Applied Meteorology, 24, 806-821(1985).

    [9] Liu N N, Luo T, Han Y J et al. Influence of typhoon peripheral circulation on atmospheric boundary layer structure in coastal areas[J]. Acta Optica Sinica, 41, 1901004(2021).

    [10] Yu S Q, Liu D, Xu J W et al. Optimization method for planetary boundary layer height retrieval by lidar[J]. Acta Optica Sinica, 41, 0728002(2021).

    [11] Wang F T, Yang T, Wang Z F et al. A comprehensive evaluation of planetary boundary layer height retrieval techniques using lidar data under different pollution scenarios[J]. Atmospheric Research, 253, 105483(2021).

    [12] Kotthaus S, Halios C H, Barlow J F et al. Volume for pollution dispersion: London’s atmospheric boundary layer during ClearfLo observed with two ground-based lidar types[J]. Atmospheric Environment, 190, 401-414(2018).

    [13] Quan J N, Gao Y, Zhang Q et al. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations[J]. Particuology, 11, 34-40(2013).

    [14] Meng Y Y, Chang J H, Chen S C et al. Cloud detection algorithm of micro-pulse lidar based on bidirectional reconstruction of backscatter signal[J]. Acta Optica Sinica, 42, 2428003(2022).

    [15] Zuo Y, Cao C F, Cao N P et al. Optical neural network quantum state tomography[J]. Advanced Photonics, 4, 026004(2022).

    [16] Gao C K, Gaur P, Rubin S et al. Thin liquid film as an optical nonlinear-nonlocal medium and memory element in integrated optofluidic reservoir computer[J]. Advanced Photonics, 4, 046005(2022).

    [17] Wang X D, Li R, Wang J et al. One-dimension hierarchical local receptive fields based extreme learning machine for radar target HRRP recognition[J]. Neurocomputing, 418, 314-325(2020).

    [18] Hwang S W, Sugiyama J. Computer vision-based wood identification and its expansion and contribution potentials in wood science: a review[J]. Plant Methods, 17, 1-21(2021).

    [19] Toledo D, Córdoba-Jabonero C, Adame J et al. Estimation of the atmospheric boundary layer height during different atmospheric conditions: a comparison on reliability of several methods applied to lidar measurements[J]. International Journal of Remote Sensing, 38, 3203-3218(2017).

    [20] Thomas R, Sylvain A, Tiago M. Deriving boundary layer height from aerosol lidar using machine learning: KABL and ADABL algorithms[J]. Atmospheric Measurement Techniques, 14, 4335-4353(2021).

    [21] Li H X, Chang J H, Liu Z X et al. An improved method for automatic determination of the planetary boundary layer height based on lidar data[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 257, 107382(2020).

    [22] Liu Z X, Chang J H, Li H X et al. Signal denoising method combined with variational mode decomposition, machine learning online optimization and the interval thresholding technique[J]. IEEE Access, 8, 223482-223494(2020).

    [23] Raghavendra K, Newsom R K, Berg L K et al. On the estimation of boundary layer heights: a machine learning approach[J]. Atmospheric Measurement Techniques, 14, 4403-4424(2021).

    [24] Córdoba-Jabonero C, Sorribas M, Guerrero-Rascado J L et al. Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula[J]. Atmospheric Chemistry and Physics, 11, 3067-3091(2011).

    [25] Liu Z. Research on determination of PBLH based on CALIPSO space-borne lidar observations[D](2017).

    [26] He D Y, Chen X L, Xu J Q. Weight aggregation method based on principle of minimum cross-entropy in multiple attribute group decision-making[J]. Control and Decision, 32, 378-384(2017).

    Zhenxing Liu, Jianhua Chang, Hongxu Li, Yuanyuan Meng, Mei Zhou, Tengfei Dai. A Highly Robust Atmospheric Boundary Layer Height Estimation Method Combining K-means and Entropy Weight Method[J]. Acta Optica Sinica, 2023, 43(12): 1228004
    Download Citation