• Acta Optica Sinica
  • Vol. 33, Issue 12, 1234001 (2013)
Lu Guoqing1、2、*, Lu Qipeng1, Peng Zhongqi1, and Gong Xuepeng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201333.1234001 Cite this Article Set citation alerts
    Lu Guoqing, Lu Qipeng, Peng Zhongqi, Gong Xuepeng. Carbon Contamination Modeling on Extreme Ultraviolet Optic Surfaces[J]. Acta Optica Sinica, 2013, 33(12): 1234001 Copy Citation Text show less
    References

    [1] D A Tichenor, A K Ray-Chaudhuri, Sang Hun Lee, et al.. Initial results from the EUV engineering test stand [C]. SPIE, 2001, 4506: 9-18.

    [2] R Peeters, S Lok, E V Alphen, et al.. ASML′s platform performance and volume introduction [C]. SPIE, 2013, 8679: 86791F.

    [3] Hakaru Mizoguchi, Hiroaki Nakarai, Tamotsu Abe, et al.. LPP-EUV light source development for high volume manufacturing lithography [C]. SPIE, 2013, 8679: 86790A.

    [4] V Jindal, P Kearney, A Antohe, et al.. Challenges in EUV mask blank deposition for high volume manufacturing [C]. SPIE, 2013, 8679: 86791D.

    [5] Yasin Ekinci, Micharla Vockenhuber, Mohamad Hojeij, et al.. Evaluation of EUV resist performance with interference lithography towards 11 nm half-pitch and beyond [C]. SPIE, 2013, 8679: 867910.

    [6] Hideaki Tsubaki, Shinji Tarutani, Naoki Inoue, et al.. EUV resist materials design for 15 nm half pitch and below [C]. SPIE, 2013, 8679: 867905.

    [7] Marco Wedowski, James H Underwood, Eric M Gullikson, et al.. High-precision reflectometry of multilayer coatings for extreme ultraviolet lithography [C]. SPIE, 2000, 3997: 83-93.

    [8] Zhu Wenxiu, Jin Chunshui, Kuang Shangqi, et al.. Design and fabrication of the multilayer film of enhancing spectral-purity in extreme ultraviolet [J]. Acta Optica Sinica, 2012, 32(10): 1031002.

    [9] Hans Meiling, Henk Meijer, Vadim Banine, et al.. First performance results of the ASML alpha demo tool [C]. SPIE, 2006, 6151: 615108.

    [10] Gregory Denbeaux, Yudhishthir Kandel, Genevieve Kane, et al.. Resist outgassing contamination growth results using both photon and electron exposures [C]. SPIE, 2013, 8679: 86790L.

    [11] L E Klebanoff, M E Malinowski, P Grunow, et al.. First environmental data from the EUV engineering test stand [C]. SPIE, 2001, 4343: 342-346.

    [12] S Oestreich, R Klein, F Scholze, et al.. Multilayer reflectance during exposure to EUV radiation [C]. SPIE, 2000, 4146: 64-71.

    [13] Liu Fei, Li Yanqiu. Design of high numerical aperture projection objective for industrial extreme ultraviolet lithography [J]. Acta Optica Sinica, 2011, 31(2): 0222003.

    [14] Yang Guanghua, Li Yanqiu. Thermal and structutal deformation of projection optics and its influence on optical imaging performance for 22 nm extreme ultraviolet lithography [J]. Acta Optica Sinica, 2012, 32(3): 0322005.

    [15] K Boller, R P Haelbich, H Hogrefe, et al.. Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation [J]. Nucl Instrum Method, 1983, 208(1): 273-279.

    [16] J Hollenshead, L Klebanoff. Modeling carbon contamination of extreme ultraviolet (EUV) optics [C]. SPIE, 2004, 5674: 675-685.

    [17] R Kurt, M V Beek, C Crombeen, et al.. Radiation induced carbon contamination of optics [C]. SPIE, 2002, 4688: 702-709.

    [18] G Kyrialou, D J Davis, R B Grant, et al.. Electron impact-assisted carbon film growth on Ru(0001): implicaions for next-generation EUV lithography [J]. J Phys Chem C, 2007, 111(12): 4491-4494.

    [19] M Shiraishi, T Yamaguchi, A Yamazaki, et al.. A simple modeling of carbon contamination on EUV exposure tools based on contamination experiments with synchrotron source [C]. SPIE, 2011, 7969: 79690N.

    [20] Juequan Chen, Eric Louis, Rob Harmsen, et al.. In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers [J]. Applied Surface Science, 2011, 258(1): 7-12.

    [21] A D Bass, L Sanche. Absolute and effective cross-sections for low-energy electron-scattering processes with condensed matter [J]. Radiat Environ Biophys, 1998, 37(4): 243-257.

    [22] B V Yakshinskiy, R Wasielewski, E Loginova, et al.. Carbon accumulation and mitigation processes, and secondary electron yields of ruthenium surfaces [C]. SPIE, 2007, 6517: 65172Z.

    [23] M E Malinowski, C A Steinhaus, D E Meeker, et al.. Relation between electron- and photon-caused oxidation in EUVL optics [C]. SPIE, 2003, 5037: 429-438.

    [24] T E Madey, N S Faradzhev, B V Yakshinskiy, et al.. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography [J]. Applied Surface Science, 2006, 253(4): 1691-1708.

    [25] S Matsunari, T Aoki, K Murakami, et al.. Carbon deposition on multilayer mirrors by extreme ultra violet ray irradiation [J]. SPIE, 2007, 6517: 65172X.

    [26] M Schürmann, S Yulin, Viatcheslav Nesterenko, et al.. Multi-technique study of carbon contamination and cleaning of Mo/Si mirrors exposed to pulsed EUV radiation [C]. SPIE, 2010, 7636: 76361P.

    [27] M Catalfano, A Kanjilal, A Al-Ajlony, et al.. Mirror contamination and secondary electron effects during EUV reflectivity analysis [C]. SPIE, 2012, 8322: 832233.

    Lu Guoqing, Lu Qipeng, Peng Zhongqi, Gong Xuepeng. Carbon Contamination Modeling on Extreme Ultraviolet Optic Surfaces[J]. Acta Optica Sinica, 2013, 33(12): 1234001
    Download Citation