• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 1, 2250003 (2022)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2、*, and [in Chinese]1
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
  • 2Department of Dermatology, The sixth Hospital of Shenzhen University (Nanshan Hospital), Shenzhen 518052, P. R. China
  • show less
    DOI: 10.1142/s1793545822500031 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. 3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2250003 Copy Citation Text show less
    References

    [1] W. Denk, J. H. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscopy," Science 248, 73–76 (1990).

    [2] L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, C. Xu, "Measurements of multiphoton action cross sections for multiphoton microscopy," Biomed. Opt. Express 5(10), 3427–3433 (2014).

    [3] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F.W.Wise, C. B. Schaffer, C. Xu, "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nat. Photonics 7(3), 205–209 (2013).

    [4] M. J. Farrar, F. W. Wise, J. R. Fetcho, C. B. Schaffer, "In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy," Biophys. J. 100(5), 1362–1371 (2011).

    [5] J.-X. Cheng, X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827–840 (2004).

    [6] C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, "Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857–1861 (2008).

    [7] E. Romanelli, C. D. Sorbara, I. Nikic, A. Dagkalis, T. Misgeld, M. Kerschensteiner, "Cellular, subcellular and functional in vivo labeling of the spinal cord using vital dyes," Nat. Protoc. 8(3), 481–490 (2013).

    [8] C. He, X. Deng, Y. Pan, S. Tong, J. Kang, J. Li, P. Qiu, K. Wang, "3-photon microscopy of myelin in mouse digital skin excited at the 1700-nm window," J. Biophotonics 13(12), e202000321 (2020).

    [9] D. Debarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3(1), 47–53 (2005).

    [10] C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, G. S. Young, "Chemically-selective imaging of brain structures with CARS microscopy," Opt. Express 15(19), 12076–12087 (2007).

    [11] S. Begin, E. Belanger, S. Laffray, B. Aube, é. Chamma, J. Belisle, S. Lacroix, Y. De Koninck, D. Cote, "Local assessment of myelin health in a multiple sclerosis mouse model using a 2D Fourier transform approach," Biomed. Opt. Expres 4(10), 2003–2014 (2013).

    [12] Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, H. Wang, "Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy," Opt. Express 16(24), 19396–19409 (2008).

    [13] S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, C.-K. Sun, "In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy," IEEE J. Sel. Top. Quantum Electron 16(3), 478–492 (2010).

    [14] H.-Y. Chung, R. Greinert, F. X. Kaertner, G. Chang, "Multimodal imaging platform for optical virtual skin biopsy enabled by a fiber-based two-color ultrafast laser source," Biomed. Opt. Express 10(2), 514–525 (2019).

    [15] C. He, M. Gan, X. Deng, H. Liu, P. Qiu, K. Wang, "3-photon fluorescence imaging of sulforhodamine B-labeled elastic fibers in the mouse skin in vivo," J. Biophotonics 12(11), e201900185 (2019).

    [16] L. L. Hsu, S. B. Pelet, T. M. Hancewicz, P. D. Kaplan, P. T. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10(2), 024016 (2005).

    [17] H. G. Breunig, H. Studier, K. K€onig, "Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo," Opt. Express 18(8), 7857–7871 (2010).

    [18] K. Wang, N. Horton, K. Charan, C. Xu, "Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics," IEEE J. Sel. Top. Quantum Electron 20(2), 6800311 (2014).

    [19] D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, C. Xu, "Deep tissue multiphoton microscopy using longer wavelength excitation," Opt. Express 17(16), 13354–13364 (2009).

    [20] S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brandli, U. Pohl, M. Rehberg, "Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy," PLoS One 9(6), e99615 (2014).

    [21] N. E. Ruiz-Uribe, S. J. Ahn, C. B. Schaffer, Label free imaging of cortical blood vessels using third harmonic generation (THG) microscopy, in Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA, BRAIN, NTM, OMA, OMP), OSA Technical Digest (Optical Society of America, 2019), paper JT4A.11.

    [22] H. Liu, Z. Zhuang, S. Tong, W. Xin, J. Li, P. Qiu, K. Wang, X. Chen, "In vivo deep-brain blood flow speed measurement through third-harmonic generation imaging excited at the 1700-nm window," Biomed. Opt. Express 11(5), 2738–2744 (2020).

    [23] T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C.-H. Wu, Y. Zhang, M. J. Schnitzer, C. Xu, "Three-photon imaging of mouse brain structure and function through the intact skull," Nat. Methods 15, 789 (2018).

    [24] H. Liu, X. Deng, S. Tong, C. He, H. Cheng, Z. Zhuang, M. Gan, J. Li, W. Xie, P. Qiu, K. Wang, "In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots," Nano Lett. 19(8), 5260–5265 (2019).

    [25] A. Thayil, A. Jesacher, T. Wilson, M. J. Booth, "The influence of aberrations in third harmonic generation microscopy," J. Opt. 12, 084009 (2010).

    [26] J. X. Cheng, X. S. Xie, "Green's function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B 19(7), 1604–1610 (2002).

    [27] Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, K. Wang, "Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window," Appl. Phys. Lett. 108(2), 4 (2016).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. 3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2250003
    Download Citation