• Acta Optica Sinica
  • Vol. 36, Issue 3, 328001 (2016)
Sun Yaru*, Shi Tonglu, Liu Jianjun, and Hong Zhi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0328001 Cite this Article Set citation alerts
    Sun Yaru, Shi Tonglu, Liu Jianjun, Hong Zhi. Terahertz Label-Free Bio-Sensing with EIT-Like Metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 328001 Copy Citation Text show less
    References

    [1] Mickan P S, Menikh A, Liu H, et al.. Label-free bioaffinity detection using terahertz technology[J]. Phys Med Biol, 2002, 47(21): 3789- 3795.

    [2] Menikh A, Mickan P S, Liu H, et al.. Label-free amplified bioaffinity detection using terahertz wave technology[J]. Biosens Bioelectron, 2004, 20(3): 658-662.

    [3] Ogawa Y, Hayashi S, Oikawa M, et al.. Interference terahertz label-free imaging for protein detection on a membrane[J]. Opt Express, 2008, 16(26): 22083-22089.

    [4] Yoshida H, Ogawa Y, Kawai Y, et al.. Terahertz sensing method for protein detection using a thin metallic mesh[J]. Appl Phys Lett, 2007, 91(25): 253901.

    [5] Dragoman M, Cismaru A, Radoi A, et al.. DNA hybridization detection in a miniaturized electromagnetic band gap resonator[J]. Appl Phys Lett, 2011, 99(25): 253106.

    [6] Lee H J, Yook J G. Biosensing using split-ring resonators at microwave regime[J]. Appl Phys Lett, 2008, 92(25): 254103.

    [7] Debus C, Bolivar H P. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Appl Phys Lett, 2007, 91(18): 184102.

    [8] Wu X J, Quan B G, Pan X C, et al.. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor [J]. Biosens Bioelectron, 2013, 42: 626-631.

    [9] Cubukcu E, Zhang S, Park Y S, et al.. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Appl Phys Lett, 2009, 95(4): 043113.

    [10] Hara F J, Singh R, Brener I, et al.. Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations[J]. Opt Express, 2008, 16(3): 1786-1795.

    [11] Cao W, Singh R, AI-Naib I A, et al.. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials[J]. Opt Lett, 2012, 37(16): 3366- 3368.

    [12] Papasimakis N, Fedotov A V, Zheludev I N. Metamaterial analog of electromagnetically induced transparency[J]. Phys Rev Lett, 2008, 101(25): 253903.

    [13] Michael F, Atac I, Jonathan M P. Electromagnetically induced transparency: Optics in coherent media[J]. Rev Mod Phys, 2005, 77(2): 633-673.

    [14] Liu N, Langguth L, Weiss T, et al.. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nat Mater, 2009, 8(9): 758-762.

    [15] Gu J Q, Singh R, Liu X J, et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3(4): 1151.

    [16] Han Hao, Wu Dongwei, Liu Jianjun, et al.. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.

    [17] Chiam Y S, Singh R, Rockstuhl C, et al.. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Phys Rev B, 2009, 80(15): 153103.

    [18] Chen C Y, Un I W, Tai N H, et al.. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Opt Express, 2009, 17(17): 15372-15380.

    [19] Azad A K, Dai J M, Zhang W L. Transmission properties of terahertz pulses through subwavelength double split-ring resonators[J]. Opt Lett, 2006, 31(5): 634-636.

    [20] Li Huayue, Liu Jianjun, Han Zhanghua, et al.. Terahertz metamaterial analog of electromagnetically induced transparency for a refractiveindex- based sensor[J]. Acta Optica Sinica, 2014, 34(2): 0223003.

    [21] Xu X L, Peng B, Li D H, et al.. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing[J]. Nano Lett, 2011, 11(8): 3232-3238.

    [22] Schreiber F. Structure and growth of self-assembling monolayers[J]. Prog Surf Sci, 2000, 65(5): 151-256.

    CLP Journals

    [1] Zhang Xinqun, Zhao Guozhong, Wang Jia. High Pass Filter Based on Metallic Rectangular Holes in Terahertz Frequency Range[J]. Laser & Optoelectronics Progress, 2017, 54(8): 82302

    [2] Wang Haoshen, Han Kui, Sun Wei, Li Haipeng, Wang Weihua, Fu Wenyue, Shen Xiaopeng. Design and Experimental Investigation of Triple-Band Metamaterial Broadband Bandpass Filter[J]. Acta Optica Sinica, 2017, 37(6): 623001

    [3] Zhang Wentao, Wang Siyuan, Zhan Pingping, Han Yingying. Method of Identifying Red Wood Based on Terahertz Time-Domain Spectroscopy[J]. Acta Optica Sinica, 2017, 37(2): 230006

    [4] Ma Changwei, Ma Wenying, Tan Yi, Tang Yuzhu. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics[J]. Opto-Electronic Engineering, 2018, 45(11): 180298

    [5] Chen Tao, Zhang Chaojie, Xu Chuanpei. Study on Terahertz Time-Domain Spectroscopy of Tartaric Acid Isomers[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81202

    Sun Yaru, Shi Tonglu, Liu Jianjun, Hong Zhi. Terahertz Label-Free Bio-Sensing with EIT-Like Metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 328001
    Download Citation