• Infrared and Laser Engineering
  • Vol. 48, Issue 9, 902001 (2019)
Ji Yi1、2、3、*
Author Affiliations
  • 1Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118
  • 2Department of Biomedical Engineering, Boston University, Boston, MA 02215
  • 3Department of Electric and Computer Engineering, Boston University, Boston, MA 02215
  • show less
    DOI: 10.3788/irla201948.0902001 Cite this Article
    Ji Yi. Visible light optical coherence tomography in biomedical imaging[J]. Infrared and Laser Engineering, 2019, 48(9): 902001 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254: 1178-1181.

    [2] Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography-principles and applications[J]. Rep Prog Phys, 2003, 66: 239-303.

    [3] Leitgeb R A, Werkmeister R M, Blatter C, et al. Doppler optical coherence tomography[J]. Prog Retin Eye Res, 2014, 41: 26-43.

    [4] Drexler W, Fujimoto J G. Optical Coherence Tomography: Technology and Applications[M]. Berlin: Springer, 2008: 621-651.

    [6] Kashani A H, Chen C L, Gahm J K, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 2017, 60: 66-100.

    [7] Carlo T E, Romano A, Waheed N K, et al. A review of optical coherence tomography angiography (OCTA) [J]. International Journal of Retina and Vitreous, 2015, 1: 5.

    [8] Baran U, Wang R K. Review of optical coherence tomography based angiography in neuroscience[J]. Neurophotonics, 2016, 3: 010902.

    [9] Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography 2013; a review [Invited] [J]. Biomed Opt Express, 2017, 8: 1838-1873.

    [10] Baumann B. Polarization sensitive optical coherence tomography: A review of technology and applications[J]. Applied Sciences, 2017, 7: 474.

    [11] Siddiqui M, Nam A S, Tozburun S, et al. High-speed optical coherence tomography by circular interferometric ranging[J]. Nature Photonics, 2018, 12:111-116.

    [12] Shu X, Beckmann L J, Zhang H F. Visible-light optical coherence tomography: a review[J]. Journal of Biomedical Optics, 2017, 22: 121707.

    [13] Povazay B, Apolonski A A, Unterhuber A, et al. Visible light optical coherence tomography[C]//Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, International Society for Optics and Photonics, 2002, 4619: 90-94.

    [14] Yi J, Chen S, Shu X, et al. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy[J]. Biomed Opt Express, 2015, 6: 3701-3713.

    [15] Kho A, Srinivasan V J. Compensating spatially dependent dispersion in visible light OCT[J]. Opt Lett, 2019, 44: 775-778.

    [16] Zhang T, Kho A M, Srinivasan V J. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking[J]. Biomed Opt Express, 2019, 10: 2918-2931.

    [17] Ju M J, Huang C, Wahl D J, et al. Visible light sensorless adaptive optics for retinal structure and fluorescence imaging[J]. Opt Lett, 2018, 43: 5162-5165.

    [18] Coquoz S, Marchand P J, Bouwens A, et al. Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy[J]. PLOS ONE, 2017, 12: e0181676.

    [19] Marchand P J, Szlag D, Bouwens A, et al. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range[J]. Journal of Biomedical Optics, 2018, 23: 036012.

    [20] Merkle C W. Chong S P, Kho A M, et al. Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo[J]. Opt Lett, 2018, 43: 198-201.

    [21] Marchand P J, Bouwens A, Szlag D, et al. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography[J]. Biomed Opt Express, 2017, 8: 3343-3359.

    [22] Pi S, Camino A, Wei X, et al. Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography[J]. Biomed Opt Express, 2018, 9: 5851-5862.

    [23] Chen S, Yi J, Liu W, et al. Monte Carlo investigation of optical coherence tomography retinal oximetry[J]. IEEE Transactions on Biomedical Engineering, 2015, 62: 2308-2315.

    [24] Yi J, Wei Q, Liu W, et al. Visible-light optical coherence tomography for retinal oximetry[J]. Opt Lett, 2013, 38: 1796-1798.

    [25] Yi J, Backman V. Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography[J]. Opt Lett, 2012, 37: 4443-4445.

    [26] Faber D J, Aalders M C G, Mik E G, et al. Oxygen saturation-dependent absorption and scattering of blood[J]. Phys Rev Lett, 2004, 93: 028102.

    [27] Leitgeb R, Wojtkowski M, Kowalczyk A, et al. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography[J]. Opt Lett, 2000, 25: 820-822.

    [28] Morgner U, Drexler W, Kartner F X, et al. Spectroscopic optical coherence tomography[J]. Opt Lett, 2000, 25: 111-113.

    [29] Yi J, Li X. Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography[J]. Opt Lett, 2010, 35: 2094-2096.

    [30] Robles F E, Chowdhury S, Wax A. Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics[J]. Biomed Opt Express, 2010, 1: 310-317.

    [31] Robles F E, Wilson C, Grant G, et al. Molecular imaging true-colour spectroscopic optical coherence tomography[J]. Nature Photonics, 2011, 5: 744-747.

    [32] Yi J, Liu W, Chen S, et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J]. Light: Science & Applications, 2015, 4: e334.

    [33] Chong S P, Merkle C W, Leahy C, et al. Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT[J]. Biomed Opt Express, 2015, 6: 3941-3951.

    [34] Yi J, Chen S, Backman V, et al. In vivo functional microangiography by visible-light optical coherence tomography[J]. Biomed Opt Express, 2014, 5: 3603-3612.

    [35] Chen S, Yi J, Zhang H F. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography[J]. Biomed Opt Express, 2015, 6: 2840-2853.

    [36] Liu R, Song W, Backman V, et al. Quantitative quality-control metrics for in vivo oximetry in small vessels by visible light optical coherence tomography angiography[J]. Biomed Opt Express, 2019, 10: 465-486.

    [37] Liu R, Winkelmann J A, Spicer G, et al. Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography[J]. Light: Science&Applications, 2018, 7: 1-13.

    [38] Liu W, Wang S, Soetikno B, et al. Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice[J]. Invest Ophthalmol Vis Sci, 2017, 58: 981-989.

    [39] Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model | Scientific Reports. https://www.nature.com/articles/srep16752.

    [40] Song W, Fu S, Song S, et al. Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model[J]. Neurophotonics, 2019, 6: 041103.

    [41] Pi S, Hormel T T, Wei X, et al. Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography[J]. Neurophotonics, 2019, 6: 041104.

    [42] Soetikno B T, Shu X, Liu Q, et al. Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation[J].Biomed Opt Express, 2017, 8: 3571-3582.

    [43] Chen S, Liu Q, Shu X, et al. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography[J]. Biomed Opt Express, 2016, 7: 3377-3389.

    [44] Chen S, Shu X, Nesper P L, et al. Retinal oximetry in humans using visible-light optical coherence tomography [Invited] [J]. Biomed Opt Express, 2017, 8: 1415-1429.

    [45] Boustany N N, Boppart S A, Backman V. Microscopic imaging and spectroscopy with scattered light[J]. Annual Review of Biomedical Engineering, 2010, 12: 285-314.

    [46] Barer R, Tkaczyk S. Refractive index of concentrated protein solutions[J]. Nature, 1954, 173: 821-822.

    [47] Yi J, Radosevich A J, Rogers J D, et al. Can OCT be sensitive to nanoscale structural alterations in biological tissue[J]. Opt Express, 2013, 21: 9043-9059.

    [48] Cherkezyan L, Capoglu I, Subramanian H, et al. Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations[J]. Phys Rev Lett, 2013, 111: 033903.

    [49] Radosevich A J, Yi J, Rogers J D, et al. Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation[J]. Opt Lett, 2012, 37: 5220-5222.

    [50] Hunter M, Backman V, Popescu G, et al. Tissue self-affinity and polarized light scattering in the born approximation: A new model for precancer detection[J]. Phys Rev Lett, 2006, 97: 138102.

    [51] Terry N G, Zhu Y, Rinehart M T, et al. Detection of dysplasia in Barrett′s ssophagus with in vivo depth-resolved nuclear morphology measurements[J]. Gastroenterology, 2011, 140: 42-50.

    [52] Qiu L, Pleskow D K, Chuttani R, et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett′s esophagus[J]. Nature Medicine, 2010, 16: 603-606.

    [53] Mirabal Y N, Chang S K, Atkinson E N, et al. Reflectance spectroscopy for in vivo detection of cervical precancer[J]. Journal of Biomedical Optics, 2002, 7: 587-595.

    [54] Canpolat M, Akman-Karakas A, Gokhan-Ocak G A, et al. Diagnosis and demarcation of skin malignancy using elastic light single-scattering spectroscopy: A pilot study[J]. Dermatologic Surgery, 2012, 38: 215-223.

    [55] Lichtenegger A, Harper J D, Augustin M, et al. Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer& x02019; s disease brain samples[J]. Biomed Opt Express, 2017, 8: 4007-4025.

    [56] Harper D J, Konegger T, Augustin M, et al. Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal pigment epithelium[J]. J Biophotonics, 2019: e201900153.

    [57] Harper D J, Augustin M, Lichtenegger A, et al. White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina[J]. Biomed Opt Express, 2018, 9: 2115-2129.

    [58] Zhang X, Hu J, Knighton R W, et al. Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer[J]. Opt Express, 2011,19: 19653-19659.

    [59] Chen S, Shu X, Yi J, et al. Dual-band optical coherence tomography using a single supercontinuum laser source[J]. Journal of Biomedical Optics, 2016, 21: 066013.

    [60] Song W, Zhou L, Zhang S, et al. Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina[J]. Biomed Opt Express, 2018, 9: 3464-3480.

    [61] Song W, Zhang L, Ness S, et al. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium and their changes with melanin bleaching: a numerical study[J]. Biomed Opt Express, 2017, 8: 3966-3980.

    Ji Yi. Visible light optical coherence tomography in biomedical imaging[J]. Infrared and Laser Engineering, 2019, 48(9): 902001
    Download Citation