• Infrared and Laser Engineering
  • Vol. 52, Issue 5, 20220731 (2023)
Hongyou Bian, Xiaowen Xu, Weijun Liu*, Wei Wang..., Fei Xing and Huiru Wang|Show fewer author(s)
Author Affiliations
  • School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
  • show less
    DOI: 10.3788/IRLA20220731 Cite this Article
    Hongyou Bian, Xiaowen Xu, Weijun Liu, Wei Wang, Fei Xing, Huiru Wang. Control of dendrite epitaxial growth and microstructure characteristics of laser deposition repaired DD5 alloy[J]. Infrared and Laser Engineering, 2023, 52(5): 20220731 Copy Citation Text show less
    SEM morphology of DZ125 superalloy powder
    Fig. 1. SEM morphology of DZ125 superalloy powder
    (a) Laser deposition equipment; (b) Schematic diagram of laser deposition repaired DD5 alloy
    Fig. 2. (a) Laser deposition equipment; (b) Schematic diagram of laser deposition repaired DD5 alloy
    Cross-section macroscopic morphology of single-layer deposition zone
    Fig. 3. Cross-section macroscopic morphology of single-layer deposition zone
    Cross-section macroscopic morphology of deposition region with different laser processing parameters
    Fig. 4. Cross-section macroscopic morphology of deposition region with different laser processing parameters
    (a) Influence of the laser processing parameters on width W of deposition zone; (b) Influence of the laser processing parameters on height H, remelted height HRand total height H+HR of deposition zone
    Fig. 5. (a) Influence of the laser processing parameters on width W of deposition zone; (b) Influence of the laser processing parameters on height H, remelted height HRand total height H+HR of deposition zone
    (a) Influence of the laser processing parameters on dendrite epitaxial growth height HE of deposition zone; (b) Influence of the laser processing parameters on the ratio of dendrite epitaxial growth η of deposition zone
    Fig. 6. (a) Influence of the laser processing parameters on dendrite epitaxial growth height HE of deposition zone; (b) Influence of the laser processing parameters on the ratio of dendrite epitaxial growth η of deposition zone
    (a) Cross-section macroscopic morphology of the deposition zone; (b) Macrostructure of the deposition zone
    Fig. 7. (a) Cross-section macroscopic morphology of the deposition zone; (b) Macrostructure of the deposition zone
    (a) Macrostructure of the substrate; (b) Macrostructure of the deposition zone; (c) Equiaxed crystal; (d) CET region; (e) Columnar crystals; (f) Planar crystal
    Fig. 8. (a) Macrostructure of the substrate; (b) Macrostructure of the deposition zone; (c) Equiaxed crystal; (d) CET region; (e) Columnar crystals; (f) Planar crystal
    (a) γ' morphology of the substrate; (b) γ' morphology of the heat affected zone; (c) γ' morphology of the dendritic epitaxial growth region of deposition zone
    Fig. 9. (a) γ' morphology of the substrate; (b) γ' morphology of the heat affected zone; (c) γ' morphology of the dendritic epitaxial growth region of deposition zone
    (a) Partition coefficient between the core-dendritic and inter-dendritic region of deposition zone; (b) Amplitude of solution concentration between the core-dendritic and inter-dendritic region of deposition zone
    Fig. 10. (a) Partition coefficient between the core-dendritic and inter-dendritic region of deposition zone; (b) Amplitude of solution concentration between the core-dendritic and inter-dendritic region of deposition zone
    (a) Carbide distributions in the substrate; (b) Carbide morphology of the substrate; (c) Carbide morphology of the heat affected zone
    Fig. 11. (a) Carbide distributions in the substrate; (b) Carbide morphology of the substrate; (c) Carbide morphology of the heat affected zone
    (a) Carbide distributions in middle and lower of the deposition zone; (b) Carbide distributions in top of the deposition zone; (c) Carbide morphologies at the bottom; (d) Carbide morphologies at the middle; (e) Carbide morphologies at the top
    Fig. 12. (a) Carbide distributions in middle and lower of the deposition zone; (b) Carbide distributions in top of the deposition zone; (c) Carbide morphologies at the bottom; (d) Carbide morphologies at the middle; (e) Carbide morphologies at the top
    (a) Microhardness of substrate and deposition zone; (b) Average microhardness
    Fig. 13. (a) Microhardness of substrate and deposition zone; (b) Average microhardness
    MaterialCCrCoMoWAlTiTaHfBReNi
    DZ1250.078.49.51.56.54.81.23.51.20.01-Bal
    DD50.057.07.51.55.06.2-6.50.15-2.6Bal
    Table 1. Chemical composition of DZ125 superalloy powder and DD5 alloy (wt.%)
    No.P/W Vb/mm·s−1m/g·min−1Spot diameter/mm
    142061.53
    242084.53
    3420107.53
    452064.53
    552087.53
    6520101.53
    762067.53
    862081.53
    9620104.53
    Table 2. Process parameters of laser deposition repaired DD5 alloy
    StationCCrCoNiHfTaTiW
    Substrate5.542.341.8411.557.0671.67--
    Bottom14.641.801.5711.295.6165.10--
    Middle8.584.533.3317.3221.4829.894.755.64
    Top8.562.421.8413.3820.8536.365.945.74
    Table 3. Energy spectrum analysis of the substrate and different regions of deposition zone (wt.%)
    Hongyou Bian, Xiaowen Xu, Weijun Liu, Wei Wang, Fei Xing, Huiru Wang. Control of dendrite epitaxial growth and microstructure characteristics of laser deposition repaired DD5 alloy[J]. Infrared and Laser Engineering, 2023, 52(5): 20220731
    Download Citation