• Journal of Innovative Optical Health Sciences
  • Vol. 1, Issue 2, 239 (2008)
ZHENG WANG*
Author Affiliations
  • Center for Functional and Metabolic Mapping Robarts Research Institute Department of Medical Biophysics The University of Western Ontario, London, Canada
  • show less
    DOI: Cite this Article
    ZHENG WANG. IN VIVO MAPPING BRAIN MICROCIRCULATION BY LASER SPECKLE CONTRAST IMAGING: A MAGNETIC RESONANCE PERSPECTIVE OF THEORETICAL FRAMEWORK[J]. Journal of Innovative Optical Health Sciences, 2008, 1(2): 239 Copy Citation Text show less
    References

    [1] Roy, C. S. and Sherrington, C. S., “On the regulation of the blood-supply of the brain,” J. Physiol. 11, 85–158 (1890).

    [2] Woolsey, T. A., Rovainen, C. M., Cox, S. B., Henegar, M. H., Liang, G. E., D. Liu, Moskalenko, Y. E., Sui, J. and Wei, L., “Neuronal units linked to microvascular modules in cerebral cortex: Response elements for imaging the brain,” Cereb. Cortex 6, 647–660 (1996).

    [3] Raichle, M. E., “Behind the scenes of functional brain imaging: A historical and physiological perspective,” Proc. Natl. Acad. Sci. USA 95, 765–772 (1998).

    [4] Iadecola, C., “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5, 347–360 (2004).

    [5] Lauritzen, M., “Reading vascular changes in brain imaging: Is dendritic calcium the key ,” Nat. Rev. Neurosci. 6, 77–85 (2005).

    [6] Harrison, R. V., Harel, N., Panesar, J. and Mount, R. J., “Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex,” Cereb. Cortex 12, 225–233 (2002).

    [7] Kety, S. S. and Schmidt, C. F., “The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations,” Am. J. Physiol. 143, 53–67 (1945).

    [8] Chen, L. M., Heider, B., Williams, G. V., Healy, F. L., Ramsden, B. M. and Roe, A. W., “A chamber and artificial dura method for long-term optical imaging in the monkey,” J. Neurosci. Methods 113, 41–49 (2002).

    [9] Ayata, C., Dunn, A. K., Gursoy, O. Y., Huang, Z., Boas, D. A. and Moskowitz, M. A., “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).

    [10] Bolay, H., Reuter, U., Dunn, A. K., Huang, Z., Boas, D. A. and Moskowitz, M. A., “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).

    [11] Dunn, A. K., Bolay, H., Moskowitz, M. A. and Boas, D. A., “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).

    [12] Weber, B., Burger, C., Wyss, M. T., von Schulthess, G. K., Scheffold, F. and Buck, A., “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).

    [13] Wang, Z., Hughes, S., Dayasundara, S. and Menon, R. S., “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27, 258–269 (2007).

    [14] Goodman, J. W., “Some effects of target-induced scintillations on optical radar performance,” Proc IEEE 53, 1688–1700 (1965).

    [15] Ohtsubo, J. and Asakura, T., “Velocity measurement of a diffuse object by using time-varying speckles,” Opt. Quant. Electr. 8, 523–529 (1976).

    [16] Takai, N., Iwai, T., Ushizaka, T. and Asakura, T., “Zero-crossing study on dynamic properties of speckles,” J. Opt. (Paris) 11, 93–101 (1980).

    [17] Fercher, A. F. and Briers, J. D., “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–329 (1981).

    [18] Goodman, J. W., Statistical Properties of laser speckle patterns, in: J. C. Dainty, (ed.) Laser Speckle and Related Topics (Springer-Verlag, Berlin, 1975), pp. 9–75.

    [19] Goodman, J. W., Statistical Optics (Wiley, New York, 1985).

    [20] Goodman, J. W., Speckle Phenomena in Optics: Theory and Applications (Greenwood Village: Roberts & Company, 2006).

    [21] Jakeman, E., Photon correlation, in: H. Z. Cummings & E. R. Pike (eds.) Photon Correlation and Light Beating Spectroscopy (Plenum Press, London, 1973), pp. 75– 149.

    [22] Gittings, A. S. and Durian, D. J., “Gaussian and non-Gaussian speckle fluctuations in the diffusing-wave spectroscopy signal of a coarsening foam,” Appl. Opt. 45, 2199– 2204 (2006).

    [23] Markhvida, I., Tchvialeva, L., Lee, T. K. and Zeng, H., “Influence of geometry on polychromatic speckle contrast,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, 93– 97 (2007).

    [24] Pries, A. R., Secomb, T. W. and Gaehtgens, P., “Biophysical aspects of blood flow in the microvasculature,” Cardiovasc. Res. 32, 654–667 (1996).

    [25] Stern, M. D., “In vivo evaluation of microcirculation by coherent light scattering,” Nature 254, 56–58 (1975).

    [26] Wang, L., Jacques, S. L. and Zheng, L., “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

    [27] Briers, J. D., “Laser Doppler and time-varying speckle: A reconciliation,” J. Opt. Soc. Am. 13, 345–350 (1996).

    [28] Briers, J. D., Richards, G. and He, X. W., “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).

    [29] Sokoloff, L., “Circulation in the central nervous system,” in: R. Greger, & U. Windhorst (eds.) Comprehensive Human Physiology (Springer-Verlag, Berlin, 1996), pp. 561–578.

    [30] Bonner, R. and Nossal, R., “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).

    [31] Attwell, D. and Iadecola, C., “The neural basis of functional brain imaging signals,” Trends Neurosci. 25, 621–625 (2002).

    [32] Yuan, S., Devor, A., Boas, D. A. and Dunn, A. K., “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).

    [33] Parthasarthy, A. B., Tom, W. J., Gopal, A., Zhang, X. and Dunn, A. K., “Robust flow measurement with multi-exposure speckle imaging,” Opt. Exp. 16, 1975–1989 (2008).

    [34] Boas, D. A. and Yodh, A. G., “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. 14, 192–215 (1997).

    [35] Zakharov, P., Volker, A., Buck, A., Weber, B. and Scheffold, F., “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).

    [36] Cheng, H. and Duong, T. Q., “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).

    [37] Li, P., Ni, S., Zhang, L., Zeng, S. and Luo, Q., “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31, 1824–1826 (2006).

    [38] Groner, W., Winkelman, J. W., Harris, A. G., Ince, C., Bouma, G. J., Messmer, K. and Nadeau, R. G., “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).

    [39] Tenland, T., Salerud, E. G., Nilsson, G. E. and Oberg, P. A., “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).

    [40] Binzoni, T., Leung, T. S., Seghier, M. L. and Delpy, D. T., “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).

    [41] Kernick, D. P., Tooke, J. E. and Shore, A. C., “The biological zero signal in laser Doppler fluximetry — origins and practical implications,” Pflugers Arch. 437, 624– 631 (1999).

    [42] Zhong, J., Seifalian, A. M., Salerud, G. E. and Nilsson, G. E., “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).

    [43] Volker, A. C., Zakharov, P., Weber, B., Buck, F. and Scheffold, F., “Laser speckle imaging with active noise reduction scheme,” Opt. Exp. 13, 9782–9787 (2005).

    [44] Dumoulin, C. L., Souza, S. P., Walker, M. F. and Wagle, W., “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9, 139–149 (1989).

    [45] Nishimura, D. G., Macovski, A. and Pauly, J. M., “Magnetic resonance angiography,” IEEE Trans. Med. Imaging 5, 140–151 (1986).

    [46] Pelc, N. J., Bernstein, M. A., Shimakawa, A. and Glover, G. H., “Encoding strategies for three-direction phase-contrast MR imaging of flow,” J. Magn. Reson. Imaging 1, 405–413 (1991).

    [47] Hahn, E., “Spin echoes,” Phys. Rev. 80, 580–594 (1950).

    [48] Feynman, R. P., Vernon, F. L. and Hellwarth, R. W., “Geometrical representation of the Schrodinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).

    [49] Kurnit, N. A., Abella, I. D. and Hartmann, S. R., “Photon echoes,” Phys. Rev. Lett. 13, 567–570 (1964).

    [50] Tian, P., Keusters, D., Suzaki, Y. and Warren, W. S., “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).

    [51] Savukov, I. M., Lee, S. K. and Romalis, M. V., “Optical detection of liquid-state NMR,” Nature 442, 1021–1024 (2006).

    ZHENG WANG. IN VIVO MAPPING BRAIN MICROCIRCULATION BY LASER SPECKLE CONTRAST IMAGING: A MAGNETIC RESONANCE PERSPECTIVE OF THEORETICAL FRAMEWORK[J]. Journal of Innovative Optical Health Sciences, 2008, 1(2): 239
    Download Citation