• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201006 (2021)
Wenfeng Cai, Ye Li, Zongyuan Tang, Huilin He, Jiawei Wang, Dan Luo, and Yanjun Liu*
Author Affiliations
  • Department of Electrical and Electronic Engineering, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
  • show less
    DOI: 10.3788/CJL202148.1201006 Cite this Article Set citation alerts
    Wenfeng Cai, Ye Li, Zongyuan Tang, Huilin He, Jiawei Wang, Dan Luo, Yanjun Liu. Liquid Crystal Random Laser: Principles and Research Progresses[J]. Chinese Journal of Lasers, 2021, 48(12): 1201006 Copy Citation Text show less
    References

    [1] Letokhov V S. Generation of light by a scattering medium with negative resonance absorption[J]. Soviet Journal of Experimental and Theoretical Physics, 26, 835-840(1968). http://adsabs.harvard.edu/abs/1968JETP...26..835L

    [2] Lawandy N M, Balachandran R M, Gomes A S L et al. Laser action in strongly scattering media[J]. Nature, 368, 436-438(1994).

    [3] Wiersma D S, van Albada M P, Lagendijk A. Random laser?[J]. Nature, 373, 203-204(1995).

    [4] Cao H, Zhao Y G, Ho S T et al. Random laser action in semiconductor powder[J]. Physical Review Letters, 82, 2278-2281(1999).

    [5] Noginov M A, Zhu G, Fowlkes I et al. GaAs random laser[J]. Laser Physics Letters, 1, 291-293(2004).

    [6] Lee C R, Lin S H, Guo C H et al. All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets[J]. Optics Express, 18, 2406-2412(2010). http://www.ncbi.nlm.nih.gov/pubmed/20174070

    [7] Dice G D, Mujumdar S, Elezzabi A Y. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser[J]. Applied Physics Letters, 86, 131105(2005). http://scitation.aip.org/content/aip/journal/apl/86/13/10.1063/1.1894590

    [8] Lee C R, Lin S H, Guo J W et al. Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell[J]. Optical Materials Express, 5, 1469-1481(2015). http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-5-6-1469

    [9] Dominguez C T, Maltez R L, dos Reis R M S et al. Dependence of random laser emission on silver nanoparticle density in PMMA films containing rhodamine 6G[J]. Journal of the Optical Society of America B, 28, 1118-1123(2011).

    [10] Germano G C M, Machado Y D R, Martinho L et al. Flexible random lasers in dye-doped bio-degradable cellulose nanocrystalline needles[J]. Journal of the Optical Society of America B, 37, 24-29(2019). http://www.researchgate.net/publication/337742057_Flexible_random_lasers_in_dye-doped_bio-degradable_cellulose_nanocrystalline_needles

    [11] Mendicuti E, Käferlein O, García-Segundo C. Random laser emission from whole blood as the active medium[J]. Optics Letters, 46, 274-277(2021). http://www.researchgate.net/publication/347410611_Random_Laser_emission_with_whole_blood_as_active_medium

    [12] Strangi G, Ferjani S, Barna V et al. Random lasing and weak localization of light in dye-doped nematic liquid crystals[J]. Optics Express, 14, 7737-7744(2006).

    [13] Yang T H, Chen C W, Jau H C et al. Liquid-crystal random fiber laser for speckle-free imaging[J]. Applied Physics Letters, 114, 191105(2019). http://www.researchgate.net/publication/333176807_Liquid-crystal_random_fiber_laser_for_speckle-free_imaging

    [14] Liu Y L, Yang W H, Xiao S M et al. Surface-emitting perovskite random lasers for speckle-free imaging[J]. ACS Nano, 13, 10653-10661(2019). http://pubs.acs.org/doi/10.1021/acsnano.9b04925

    [15] Polson R C, Vardeny Z V. Random lasing in human tissues[J]. Applied Physics Letters, 85, 1289-1291(2004). http://scitation.aip.org/content/aip/journal/apl/85/7/10.1063/1.1782259

    [16] Wiersma D S, Cavalieri S. A temperature-tunable random laser[J]. Nature, 414, 708-709(2001).

    [17] Boschetti A, Taschin A, Bartolini P et al. Spectral super-resolution spectroscopy using a random laser[J]. Nature Photonics, 14, 177-182(2020). http://www.nature.com/articles/s41566-019-0558-4

    [18] Sebbah P, Carminati R. Breakthroughs in photonics 2014: random lasers[J]. IEEE Photonics Journal, 7, 1-7(2015).

    [19] Pradhan P, Kumar N. Localization of light in coherently amplifying random media[J]. Physical Review B, 50, 9644-9647(1994). http://www.ncbi.nlm.nih.gov/pubmed/9975033

    [20] Jiang X, Soukoulis C M. Time dependent theory for random lasers[J]. Physical Review Letters, 85, 70-73(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000085000001000070000001&idtype=cvips&gifs=Yes

    [21] Vanneste C, Sebbah P. Selective excitation of localized modes in active random media[J]. Physical Review Letters, 87, 183903(2001).

    [22] Wiersma D S, van Albada M P, Lagendijk A. Coherent backscattering of light from amplifying random media[J]. Physical Review Letters, 75, 1739-1742(1995). http://www.ncbi.nlm.nih.gov/pubmed/10060379

    [23] Anderson P W. Absence of diffusion in certain random lattices[J]. Physical Review, 109, 1492-1505(1958).

    [24] Cao H, Xu J Y, Ling Y et al. Random lasers with coherent feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 111-119(2003).

    [25] Florescu L, John S. Photon statistics and coherence in light emission from a random laser[J]. Physical Review Letters, 93, 013602(2004). http://adsabs.harvard.edu/abs/2004PhRvL..93a3602F

    [26] Cao H, Ling Y, Xu J Y et al. Photon statistics of random lasers with resonant feedback[J]. Physical Review Letters, 86, 4524-4527(2001). http://www.ncbi.nlm.nih.gov/pubmed/11384274

    [27] Cao H, Xu J Y, Zhang D Z et al. Spatial confinement of laser light in active random media[J]. Physical Review Letters, 84, 5584-5587(2000).

    [28] Ioffe A F, Regel A R. Non-crystalline, amorphous and liquid electronic semiconductors[J]. Prog. Semicond, 4, 237-291(1960).

    [29] Apalkov V M, Raikh M E, Shapiro B. Random resonators and prelocalized modes in disordered dielectric films[J]. Physical Review Letters, 89, 016802(2002). http://www.europepmc.org/abstract/MED/12097060

    [30] Mujumdar S, Ricci M, Torre R et al. Amplified extended modes in random lasers[J]. Physical Review Letters, 93, 053903(2004). http://www.ncbi.nlm.nih.gov/pubmed/15323697

    [31] Ye Y X, Fan D Y. Incoherent radiation of amplifying random media[J]. Chinese Journal of Lasers, 34, 364-369(2007).

    [32] Türeci H E, Ge L, Rotter S et al. Strong interactions in multimode random lasers[J]. Science, 320, 643-646(2008).

    [33] Yamilov A, Cao H. Highest-quality modes in disordered photonic crystals[J]. Physical Review A, 69, 031803(2004).

    [34] Liu J S, Wang C, Xiong Z. Origin of light localization from orientational disorder in one- and two-dimensional random media with uniaxial scatterers[J]. Physical Review B, 73, 195110(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000073000019195110000001&idtype=cvips&gifs=Yes

    [35] Liu Y J, Sun X W, Elim H I et al. Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets[J]. Applied Physics Letters, 89, 011111(2006). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2219988

    [36] Ye L H, Hou C, Lü C G et al. Tailoring of random lasing characteristics in dye-doped nematic liquid crystals[J]. Applied Physics B, 115, 303-309(2014). http://link.springer.com/article/10.1007/s00340-014-5822-1

    [37] Ferjani S, de Luca A, Barna V et al. Thermo-recurrent nematic random laser[J]. Optics Express, 17, 2042-2047(2009). http://europepmc.org/abstract/MED/19189035

    [38] He B Q, Liao Q, Huang Y. Random lasing in a dye doped cholesteric liquid crystal polymer solution[J]. Optical Materials, 31, 375-379(2008).

    [39] Lin S H, Chen P Y, Li Y H et al. Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells[J]. IEEE Photonics Journal, 9, 1-8(2017). http://ieeexplore.ieee.org/document/7890451/

    [40] Bian H T, Yao F F, Liu H et al. Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals[J]. Liquid Crystals, 41, 1436-1441(2014).

    [41] Dai G, Wang L, Deng L G. Flexible random laser from dye doped stretchable polymer film containing nematic liquid crystal[J]. Optical Materials Express, 10, 68-75(2020). http://www.researchgate.net/publication/337845346_Flexible_random_laser_from_dye_doped_stretchable_polymer_film_containing_nematic_liquid_crystal

    [42] Naruta T, Akita T, Uchida Y et al. Magnetically controllable random laser in ferromagnetic nematic liquid crystals[J]. Optics Express, 27, 24426-24433(2019).

    [43] Dai H T, Chen L, Zhang B et al. Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation[J]. Optics Letters, 40, 2723-2726(2015). http://europepmc.org/abstract/MED/26076246

    [44] Li K, Jiang H D, Cheng M et al. Controlling morphological and electro-optical properties via the phase separation in polymer/liquid-crystal composite materials[J]. Liquid Crystals, 47, 238-247(2020). http://www.tandfonline.com/doi/abs/10.1080/02678292.2019.1641854?tab=permissions&scroll=top

    [45] Saeed M H, Zhang S F, Cao Y P et al. Recent advances in the polymer dispersed liquid crystal composite and its applications[J]. Molecules, 25, 5510(2020). http://www.researchgate.net/publication/346305441_molecules_Recent_Advances_in_The_Polymer_Dispersed_Liquid_Crystal_Composite_and_Its_Applications

    [46] Kim M, Park K J, Seok S et al. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows[J]. ACS Applied Materials & Interfaces, 7, 17904-17909(2015). http://dx.doi.org/10.1021/acsami.5b04496

    [47] Lai Y T, Kuo J C, Yang Y J. A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes[J]. Sensors and Actuators A: Physical, 215, 83-88(2014).

    [48] Xiong G R, Han G Z, Sun C et al. Phototunable microlens array based on polymer dispersed liquid crystals[J]. Advanced Functional Materials, 19, 1082-1086(2009). http://www.researchgate.net/publication/230066480_Phototunable_Microlens_Array_Based_on_Polymer_Dispersed_Liquid_Crystals

    [49] Labeeb A M, Ibrahim S A, Ward A A et al. Polymer/liquid crystal nanocomposites for energy storage applications[J]. Polymer Engineering & Science, 60, 2529-2540(2020). http://onlinelibrary.wiley.com/doi/epdf/10.1002/pen.25491

    [50] Lin J H, Hsiao Y L. Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes[J]. Optical Materials Express, 4, 1555-1563(2014).

    [51] Ahmad F, Jamil M, Jeon Y J. Advancement trends in dye-doped polymer dispersed liquid crystals: a survey review[J]. Molecular Crystals and Liquid Crystals, 648, 88-113(2017). http://www.tandfonline.com/doi/full/10.1080/15421406.2017.1301860?cookieSet=1

    [52] Ye L H, Li F J, Lu C G et al. The controllable intensity and polarization degree of random laser from sheared dye-doped polymer-dispersed liquid crystal[J]. Nanophotonics, 7, 473-478(2017). http://www.degruyter.com/view/j/nanoph.2018.7.issue-2/nanoph-2017-0070/nanoph-2017-0070.xml

    [53] Dai H T, Gao M N, Xue Y X et al. Magnetically tunable random lasing from polymer dispersed liquid crystal doped ferromagnetic nanoparticles in capillary[J]. AIP Advances, 9, 115015(2019). http://www.researchgate.net/publication/337354777_Magnetically_tunable_random_lasing_from_polymer_dispersed_liquid_crystal_doped_ferromagnetic_nanoparticles_in_capillary

    [54] Wang D S, Chen M Z, Dai H T et al. Optically tunable random lasing from azo-dye-doped polymer dispersed liquid crystal in capillary tubes[J]. Chinese Journal of Liquid Crystals and Displays, 34, 935-944(2019).

    [55] Coles H, Morris S. Liquid-crystal lasers[J]. Nature Photonics, 4, 676-685(2010).

    [56] Pieraccini S, Masiero S, Ferrarini A et al. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications[J]. Chemical Society Reviews, 40, 258-271(2011). http://onlinelibrary.wiley.com/doi/10.1002/chin.201119242

    [57] Bisoyi H K, Li Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D[J]. Accounts of Chemical Research, 47, 3184-3195(2014).

    [58] Bisoyi H K, Bunning T J, Li Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures[J]. Advanced Materials, 30, 1706512(2018). http://onlinelibrary.wiley.com/doi/10.1002/adma.201706512

    [59] Mitov M. Cholesteric liquid crystals with a broad light reflection band[J]. Advanced Materials, 24, 6260-6276(2012).

    [60] Lin J D, Lin H Y, Wei G J et al. A broadban-tunable photonic bandgap and thermally convertible laser with an ultra-low lasing threshold from a refilled chiral polymer template[J]. Journal of Materials Chemistry C, 7, 4740-4747(2019). http://pubs.rsc.org/en/content/articlelanding/2019/tc/c9tc00194h

    [61] Ranjkesh A, Yoon T H. Thermal and electrical wavelength tuning of Bragg reflection with ultraviolet light absorbers in polymer-stabilized cholesteric liquid crystals[J]. Journal of Materials Chemistry C, 6, 12377-12385(2018). http://pubs.rsc.org/en/content/articlelanding/2018/tc/c8tc04563a

    [62] Wang H, Bisoyi H K, Urbas A M et al. Reversible circularly polarized reflection in a self-organized helical superstructure enabled by a visible-light-driven axially chiral molecular switch[J]. Journal of the American Chemical Society, 141, 8078-8082(2019).

    [63] Zhang Y F, Yuan Z Y, Qiao Z et al. Tunable microlasers modulated by intracavity spherical confinement with chiral liquid crystal[J]. Advanced Optical Materials, 8, 1902184(2020). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201902184

    [64] Li Y, Luo D. Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen[J]. Optical Materials Express, 6, 691-696(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ome-6-2-691

    [65] Zhan X Y, Fan H P, Li Y et al. Low threshold polymerised cholesteric liquid crystal film lasers with red, green and blue colour[J]. Liquid Crystals, 46, 970-976(2019).

    [66] Park S, Lee S S, Kim S H. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops[J]. Advanced Materials, 32, 2002166(2020). http://onlinelibrary.wiley.com/doi/10.1002/adma.202002166

    [67] Morris S M, Gardiner D J, Hands P J W et al. Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals[J]. Applied Physics Letters, 100, 071110(2012).

    [68] Huang W B, Yuan C L, Shen D et al. Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure[J]. Journal of Materials Chemistry C, 5, 6923-6928(2017). http://pubs.rsc.org/en/content/articlelanding/2017/tc/c7tc02076g/unauth

    [69] Lu H B, Xing J, Wei C et al. Band-gap-tailored random laser[J]. Photonics Research, 6, 390-395(2018).

    [70] Lu H B, Yang L, Xia L et al. Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal[J]. Liquid Crystals, 48, 255-262(2021). http://www.tandfonline.com/doi/full/10.1080/02678292.2020.1774085

    [71] Ye L H, Wang Y, Feng Y Y et al. Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals[J]. Laser Physics Letters, 15, 035002(2018).

    [72] Gao S H, Wang J Y, Li W H et al. Low threshold random lasing in dye-doped and strongly disordered chiral liquid crystals[J]. Photonics Research, 8, 642-647(2020). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ202005003.htm

    [73] Stegemeyer H, Blümel T H, Hiltrop K et al. Thermodynamic, structural and morphological studies on liquid-crystalline blue phases[J]. Liquid Crystals, 1, 3-28(1986).

    [74] Kitzerow H S, Bahr C. Chirality in liquid crystals[M], 186-218(2001).

    [75] Li Y, Huang S J, Zhou P C et al. Polymer-stabilized blue phase liquid crystals for photonic applications[J]. Advanced Materials Technologies, 1, 1600102(2016). http://onlinelibrary.wiley.com/doi/10.1002/admt.201600102/abstract

    [76] Chen Y, Wu S T. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices[J]. Journal of Applied Polymer Science, 131, 4525-4529(2014). http://onlinelibrary.wiley.com/doi/pdf/10.1002/app.40780

    [77] Kikuchi H, Yokota M, Hisakado Y et al. Polymer-stabilized liquid crystal blue phases[J]. Nature Materials, 1, 64-68(2002). http://dx.doi.org/10.1038/nmat712

    [78] Lin T H, Chen C W, Jau H C et al. Lasing effect in blue phase liquid crystal[J]. Proceedings of SPIE, 8828, 882808(2013). http://spie.org/x648.xml?product_id=2022738

    [79] Chen C W, Jau H C, Wang C T et al. Random lasing in blue phase liquid crystals[J]. Optics Express, 20, 23978-23984(2012).

    [80] Khoo I C, Lin T H. Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals[J]. Optics Letters, 37, 3225-3227(2012). http://europepmc.org/abstract/med/22859140

    [81] Liao R C, Zhan X Y, Xu X W et al. Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell[J]. Liquid Crystals, 47, 715-722(2020). http://www.tandfonline.com/doi/full/10.1080/02678292.2019.1673842?scroll=top

    [82] Chauhan S, Mukherjee S, Varanytsia A et al. Efficient random lasing in topologically directed assemblies of blue-phase liquid crystal microspheres[J]. Optical Materials Express, 10, 2030-2044(2020). http://www.researchgate.net/publication/343408143_Efficient_random_lasing_in_topologically_directed_assemblies_of_blue-phase_liquid_crystal_microspheres

    [83] Wang L, Wang M, Yang M C et al. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization[J]. Chinese Physics B, 25, 094217(2016).

    [84] Vaveliuk P, de Oliveira P C. Model for bichromatic laser emission from a laser dye with nanoparticle scatterers[J]. Physical Review A, 68, 013805(2003). http://adsabs.harvard.edu/abs/2003PhRvA..68a3805V

    [85] Chang S H, Wu J J, Kuo C C et al. Plasmonic random laser from dye-doped cholesteric liquid crystals incorporating silver nanoprisms[J]. Optics Letters, 45, 5144-5147(2020).

    [86] Ziegler J, Djiango M, Vidal C et al. Gold nanostars for random lasing enhancement[J]. Optics Express, 23, 15152-15159(2015).

    [87] Liu Q K, Yuan Y, Smalyukh I I. Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles[J]. Nano Letters, 14, 4071-4077(2014). http://europepmc.org/abstract/med/24884975

    [88] Mertelj A, Lisjak D, Drofenik M et al. Ferromagnetism in suspensions of magnetic platelets in liquid crystal[J]. Nature, 504, 237-241(2013). http://www.ncbi.nlm.nih.gov/pubmed/24336284

    [89] Liu Q K, Senyuk B, Tang J W et al. Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter[J]. Physical Review Letters, 109, 088301(2012). http://europepmc.org/abstract/MED/23002777

    [90] Rožič B, Fresnais J, Molinaro C et al. Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects[J]. ACS Nano, 11, 6728-6738(2017). http://www.ncbi.nlm.nih.gov/pubmed/28640628

    [91] Liu Q K, Cui Y X, Gardner D et al. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications[J]. Nano Letters, 10, 1347-1353(2010). http://www.ncbi.nlm.nih.gov/pubmed/20334353/

    [92] Bisoyi H K, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly[J]. Chemical Society Reviews, 40, 306-319(2011). http://smartsearch.nstl.gov.cn/paper_detail.html?id=0ddc0d8c88354ac4f44a8d5a69e4ecd6

    [93] Wang L, Wan Y, Shi L J et al. Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles[J]. Optics Express, 24, 17593-17602(2016).

    [94] Li L W, Deng L G. Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells[J]. Laser Physics, 23, 085001(2013).

    [95] Wang C, Deng L G. Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals[J]. Laser Physics Letters, 11, 115814(2014). http://arxiv.org/abs/1405.0832

    [96] Wan Y, An Y, Deng L. Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes[J]. Scientific Reports, 7, 16185(2017). http://europepmc.org/abstract/MED/29170519

    [97] Wan Y, Deng L G. Pump-controlled plasmonic random lasers from dye-doped nematic liquid crystals with TiN nanoparticles in non-oriented cells[J]. Applied Sciences, 10, 199(2019). http://www.researchgate.net/publication/338190004_Pump-Controlled_Plasmonic_Random_Lasers_from_Dye-Doped_Nematic_Liquid_Crystals_with_TiN_Nanoparticles_in_Non-Oriented_Cells

    [98] Roy P K, Haider G, Lin H I et al. Random lasers: multicolor ultralow-threshold random laser assisted by vertical-graphene network[J]. Advanced Optical Materials, 6, 1870063(2018).

    [99] Schönhuber S, Brandstetter M, Hisch T et al. Random lasers for broadband directional emission[J]. Optica, 3, 1035-1038(2016). http://arxiv.org/abs/1605.09552v1

    [100] Wu R N, Lu J Q, Yang F et al. Features of liquid crystal laser in SU-8 grating structure[J]. Chinese Journal of Luminescence, 41, 71-76(2020).

    [101] Chen M Z, Dai H T, Wang D S et al. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries[J]. Journal of Applied Physics, 123, 103105(2018). http://www.researchgate.net/publication/323744651_Thermally_and_optically_tunable_lasing_properties_from_dye-doped_holographic_polymer_dispersed_liquid_crystal_in_capillaries

    [102] Ma X Y, Pan J W, Chen P L et al. Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si[J]. Optics Express, 17, 14426-14433(2009).

    [103] Wang Z W, Cao M X, Shao G R et al. Coherent random lasing in colloidal quantum dot-doped polymer-dispersed liquid crystal with low threshold and high stability[J]. The Journal of Physical Chemistry Letters, 11, 767-774(2020). http://www.researchgate.net/publication/338592068_Coherent_Random_Lasing_in_Colloidal_Quantum_Dot_Doped_Polymer_Dispersed_Liquid_Crystal_with_Low_Threshold_and_High_Stability

    Wenfeng Cai, Ye Li, Zongyuan Tang, Huilin He, Jiawei Wang, Dan Luo, Yanjun Liu. Liquid Crystal Random Laser: Principles and Research Progresses[J]. Chinese Journal of Lasers, 2021, 48(12): 1201006
    Download Citation