• Infrared Technology
  • Vol. 42, Issue 9, 893 (2020)
Jing CAO1、*, Yu HOU1, Jiapeng LI2, Jun CHEN2, Shuangtao CHEN1, and Liang CHEN1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CAO Jing, HOU Yu, LI Jiapeng, CHEN Jun, CHEN Shuangtao, CHEN Liang. Optimal Design of Miniature Joule-Thomson Cryocooler[J]. Infrared Technology, 2020, 42(9): 893 Copy Citation Text show less
    References

    [2] Maytal BZ. Performance of ideal flow regulated Joule-Thomson cryocooler[J]. Cryogenics, 1994, 34(9): 723-726

         Maytal BZ. Performance of ideal flow regulated Joule-Thomson cryocooler[J]. Cryogenics, 1994, 34(9): 723-726

    [3] CHOU FC, PAI CF, CHIEN SB, et al. Preliminary experimental and numerical study of transient characteristics for a Joule-Thomson cryocooler[J]. Cryogenics, 1995, 35(5): 311-316.

         CHOU FC, PAI CF, CHIEN SB, et al. Preliminary experimental and numerical study of transient characteristics for a Joule-Thomson cryocooler[J]. Cryogenics, 1995, 35(5): 311-316.

    [4] XUE H, Ng KC, WANG JB. Performance evaluation of the recuperative heat exchanger in a miniature Joule=Thomson cooler[J]. Applied Thermal Engineering, 2001, 21(18): 1829-1844.

         XUE H, Ng KC, WANG JB. Performance evaluation of the recuperative heat exchanger in a miniature Joule=Thomson cooler[J]. Applied Thermal Engineering, 2001, 21(18): 1829-1844.

    [5] NgKC, XUE H, WANG JB. Experimental and numerical study on a miniature Joule-Thomson cooler for steady-state characteristics[J]. International Journal of Heat & Mass Transfer, 2002, 45(3): 609-618.

         NgKC, XUE H, WANG JB. Experimental and numerical study on a miniature Joule-Thomson cooler for steady-state characteristics[J]. International Journal of Heat & Mass Transfer, 2002, 45(3): 609-618.

    [6] CHUA H T, WANG X L, TEO H Y. A numerical study of the Hampson-type miniature Joule–Thomson cryocooler[J]. International Journal of Heat & Mass Transfer, 2006, 49(3-4): 582-593.

         CHUA H T, WANG X L, TEO H Y. A numerical study of the Hampson-type miniature Joule–Thomson cryocooler[J]. International Journal of Heat & Mass Transfer, 2006, 49(3-4): 582-593.

    [7] HONG Y J, Park S J, Choi Y D. A Numerical Study on Operating Characteristics of a Miniature Joule-Thomson Refrigerator[J]. Progress in Superconductivity & Cryogenics, 2010, 12(4): 41-45.

         HONG Y J, Park S J, Choi Y D. A Numerical Study on Operating Characteristics of a Miniature Joule-Thomson Refrigerator[J]. Progress in Superconductivity & Cryogenics, 2010, 12(4): 41-45.

    [8] Lerou PPPM, Veenstra T T, Burger J F, et al. Optimization of counterflow heat exchanger geometry through minimization of entropy generation[J]. Cryogenics, 2005, 45: 659-669.

         Lerou PPPM, Veenstra T T, Burger J F, et al. Optimization of counterflow heat exchanger geometry through minimization of entropy generation[J]. Cryogenics, 2005, 45: 659-669.

    [9] Gupta P K, Kush P K, Tiwari A. Design and optimization of coil finned-tube heat exchangers for cryogenic applications[J]. Cryogenics, 2007, 47(5-6): 322-332.

         Gupta P K, Kush P K, Tiwari A. Design and optimization of coil finned-tube heat exchangers for cryogenic applications[J]. Cryogenics, 2007, 47(5-6): 322-332.

    [10] CAO J, HOU Y, WANG W B, et al. Transient modeling and influence of operating parameters on thermodynamic performance of miniature Joule-Thomson cryocooler[J]. Applied Thermal Engineering, 2018(143): 1093-1100.

         CAO J, HOU Y, WANG W B, et al. Transient modeling and influence of operating parameters on thermodynamic performance of miniature Joule-Thomson cryocooler[J]. Applied Thermal Engineering, 2018(143): 1093-1100.

    [11] Timmerhaus K D, Flynn T M. Cryogenic Process Engineering[M]. New York: Plenum Press, 1989.

         Timmerhaus K D, Flynn T M. Cryogenic Process Engineering[M]. New York: Plenum Press, 1989.

    CAO Jing, HOU Yu, LI Jiapeng, CHEN Jun, CHEN Shuangtao, CHEN Liang. Optimal Design of Miniature Joule-Thomson Cryocooler[J]. Infrared Technology, 2020, 42(9): 893
    Download Citation