• Acta Optica Sinica
  • Vol. 36, Issue 2, 205001 (2016)
Liu Ying1、*, Chui Jie2, Yao Guozheng1, and Ye Zhicheng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0205001 Cite this Article Set citation alerts
    Liu Ying, Chui Jie, Yao Guozheng, Ye Zhicheng. Study on Diffraction, Anti-reflection and Transmission Enhancement of Subwavelength Relief Gratings[J]. Acta Optica Sinica, 2016, 36(2): 205001 Copy Citation Text show less
    References

    [1] Bayanheshig, Tang Yuguo, Qi Xiangdong, et al.. The complete analytical form and analysis on angular dispersion formula of twodimensional grating[J]. Acta Physica Sinica, 2004, 53(12): 4181-4188.

    [2] Y M Song, E S Choi, J S Yu, et al.. Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures[J]. Opt Express, 2009,17(23): 20991-20997.

    [3] Y Kanamori, M Ishimori, K Hane. High efficient light-emitting diodes with antireflection subwavelength gratings[J]. IEEE Photonics Technology Letters, 2002,14(8): 1064-1066.

    [4] I Hiroyuki, B Toshihiko. Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal[J]. Appl Phys Lett, 2004, 84(4): 457-459.

    [5] K X Wang, Z Yu, V Liu. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings[J]. Nano Lett 2012, 12(3): 1616-1619.

    [6] Kong Weijing, Cao Kaihua, You Chenglong, et al.. Optimization of wide spectrum anti-reflective grating for solar cell[J]. Acta Optica Sinica, 2013, 33(12): 1205001.

    [7] R Y Zhang, B Shao, J R Dong, et al.. Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating[J]. J Appl Phys, 2011, 110(11): 113105.

    [8] K Li, H Zhen, Z Huang, et al.. Embedded surface relief gratings by a simple method to improve absorption and electrical properties of polymer solar cells[J]. ACS Appl Mater Interfaces, 2012, 4(8): 4393-4397.

    [9] Hong Liang, Yang Chenying, Shen Weidong, et al.. Design of incident angle-independent color filterbased on subwavelength twodimensional gratings[J]. Acta Physica Sinica, 2013, 62(6): 064204.

    [10] K C Park, H J Choi, C H Chang, et al.. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity[J]. ACS Nano, 2012, 6(5): 3789-3799.

    [11] S Ji, K Song, T B Nguyen, et al.. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection[J]. ACS Appl Mater Interfaces, 2013, 5(21): 10731-10737.

    [12] Wang Zhiwen, Chu Jinkui, Wang Qianyin. Transmission ananlysis of single layer sub-wavelength matal gratings[J]. Acta Optica Sinica, 2015, 35(7): 0705002.

    [13] Guo Chucai, Ye Weimin, Yuan Xiaodong, et al.. Research on sub-wavelength grating polarizing beam splitter[J]. Acta Optica Sinica, 2010, 30(9): 2690-2695.

    [14] Fang Ming, Gao Jiancun, Tang Xinchun, et al.. Generating linearly polarized TEM00 laser beam with grating mirror as the back-cavity mirror[J]. Chinese J Lasers, 2014, 41(3): 0302001.

    [15] Zhao Huajun, Yang Shouliang, Zhang Dong, et al.. Design of polarizing beam splitters based on subwavelength metal grating[J]. Acta Physica Sinica, 2009, 58(9): 6236-6242.

    [16] Ventola, J Tervo, S Siitonen, et al.. High efficiency half-wave retardation in diffracted light by coupled waves[J]. Opt Express, 2012, 20(4): 4681-4689.

    [17] D H Raguin, G M Morris. Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles[J]. Appl Opt, 1993, 32(14): 2582-2598.

    [18] A Gombert, K Rose, A Heinzel, et al.. Antireflective submicrometer surface-relief gratings for solar applications[J]. Solar Energy Materials and Solar Cells, 1998, 54: 333-342.

    [19] Y Kanamori, M Sasaki, K Hane. Broadband antireflection gratings fabricated upon silicon substrates[J]. Opt Lett, 1999, 24(20): 1422- 1424.

    [20] J Jefferies, R G Sabat. Surface-relief diffraction gratings′ optimization for plasmonic enhancements in thin-film solar cells[J]. Prog Photovolt: Res Appl, 2014, 22: 648-655.

    [21] M G Moharam, D A Pommet, E B Grann, et al.. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. J Opt Soc Am A, 1995, 12(5): 1077-1086.

    [22] R Bouffaron, L Escoubas, J J Simon, et al.. Enhanced antireflecting properties of microstructured flat-top pyramids[J]. J Opt Soc Am A, 2008, 16(23): 19304-19309.

    [23] M Honkanen, V Kettunen, M Kuittinen, et al.. Inverse metal-stripe polarizers[J]. Appl Phys B, 1999, 68(1): 81-85.

    [24] L Phan, W G Walkup, D D Ordinario, et al.. Reconfi gurable infrared camouflage coatings from a cephalopod protein[J]. Adv Mater, 2013, 25(39): 5621-5625.

    CLP Journals

    [1] CHEN Zhi. Optical Properties of RGB Waveguide Multiplexers/Demultiplexers with Bragg Grating Structure[J]. Semiconductor Optoelectronics, 2021, 42(6): 789

    [2] Xie Jianlai, Hao Yongqin, Wang Zhiwei, Wang Xia, Yan Changling, Liu Guojun, Ma Xiaohui, Li Yang, Yue Guangli, Zhang Xin. Design of 2 μm Waveband GaSb Based Subwavelength Grating Mirror[J]. Laser & Optoelectronics Progress, 2017, 54(7): 70501

    Liu Ying, Chui Jie, Yao Guozheng, Ye Zhicheng. Study on Diffraction, Anti-reflection and Transmission Enhancement of Subwavelength Relief Gratings[J]. Acta Optica Sinica, 2016, 36(2): 205001
    Download Citation