• Acta Optica Sinica
  • Vol. 37, Issue 9, 0914003 (2017)
Jing Yang*, Hankui Wang, Yu Zhu, Weifeng Liu, and Gaoliang Wang
Author Affiliations
  • College of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, China
  • show less
    DOI: 10.3788/AOS201737.0914003 Cite this Article Set citation alerts
    Jing Yang, Hankui Wang, Yu Zhu, Weifeng Liu, Gaoliang Wang. Output Characteristics of Multistage Alkali Vapor Laser Amplifiers[J]. Acta Optica Sinica, 2017, 37(9): 0914003 Copy Citation Text show less
    Diagram of energy levels and corresponding transitions of Cs atom
    Fig. 1. Diagram of energy levels and corresponding transitions of Cs atom
    Variation in amplified light power with flow velocity. (a) Pp=1 kW, Tw=110 ℃; (b) Pp=2 kW, Tw=120 ℃
    Fig. 2. Variation in amplified light power with flow velocity. (a) Pp=1 kW, Tw=110 ℃; (b) Pp=2 kW, Tw=120 ℃
    Output power and particle number density of each energy level as a function of pump light intensity
    Fig. 3. Output power and particle number density of each energy level as a function of pump light intensity
    Comparison of output powers of single-level amplifier and double-level amplifier with the same total pump power and vapor pool length
    Fig. 4. Comparison of output powers of single-level amplifier and double-level amplifier with the same total pump power and vapor pool length
    Relationship between output power and ratio of pump power of three-level amplifier. (a) Pp=1 kW, Ps=20 W, Tw=110 ℃; (b) Pp=2 kW, Ps=20 W, Tw=120 ℃
    Fig. 5. Relationship between output power and ratio of pump power of three-level amplifier. (a) Pp=1 kW, Ps=20 W, Tw=110 ℃; (b) Pp=2 kW, Ps=20 W, Tw=120 ℃
    PhaseKinetic processReference
    PumpingCs(62S1/2)+hvp→Cs(62P3/2)This work
    RelaxationCs(62P3/2)+C2H6→Cs(62P1/2)+C2H6[12]
    Stimulated emissionCs(62P1/2)+nhvl→Cs(62S1/2)+(n+1)hvlThis work
    Amplified spontaneous emission (ASE)Cs(62P3/2)→Cs(62S1/2)+hv31Cs(62P1/2)→Cs(62S1/2)+hv21Cs(62D3/2,5/2,82S1/2)→Cs(62P3/2,1/2,62S1/2)+hvij[24][24][15]
    QuenchingPhoto-excitationCs(62P3/2,1/2)+C2H6→Cs(62S1/2)+C2H6Cs(62P3/2,1/2)+hvp,l→Cs(62D3/2,5/2,82S1/2)[24][15]
    Energy pooling2Cs(62P3/2,1/2)→Cs(62D3/2,5/2,82S1/2)+Cs(62S1/2)[15]
    Photo-ionizationCs(62D3/2,5/2,82S1/2)+hvp,l→Cs++e[15]
    Penning ionizationCs(62P3/2,1/2)+Cs(62D3/2,5/2,82S1/2)→Cs(62S1/2)+Cs++e[15]
    RecombinationCs++Cs(62S1/2)+Cs→Cs2++CsCs++Cs(62S1/2)+He→Cs2++HeCs2++e→Cs(62D3/2,5/2,82S1/2)+Cs(62S1/2)[15]
    Table 1. Laser kinetic processes of Cs atom in DPALs
    ParameterDescriptionValueReference
    Tw /℃Wall temperature110, 120[24], [15]
    L /cmCell length10This work
    R /mmCell radius5[24]
    Ps /WSeed power20[24]
    ηTransmission of the coupled lens0.99This work
    tTransmission of the cell window0.99This work
    PHe/PatmPressure of helium5This work
    PC2H6 /PatmPressure of ethane1This work
    ωp /mmPump beam waist3.5[24]
    ωs /mmSeed beam waist3.5[24]
    Table 2. Main parameters involved in numerical calculation
    Jing Yang, Hankui Wang, Yu Zhu, Weifeng Liu, Gaoliang Wang. Output Characteristics of Multistage Alkali Vapor Laser Amplifiers[J]. Acta Optica Sinica, 2017, 37(9): 0914003
    Download Citation