• Photonics Research
  • Vol. 11, Issue 10, 1694 (2023)
Mauro David1, Davide Disnan2, Elena Arigliani1, Anna Lardschneider1..., Georg Marschick1, Hanh T. Hoang1, Hermann Detz1,3, Bernhard Lendl4, Ulrich Schmid2, Gottfried Strasser1 and Borislav Hinkov1,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Solid State Electronics and Center for Micro- and Nanostructures, TU Wien, Vienna, Austria
  • 2Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
  • 3Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
  • 4Institute of Chemical Technologies and Analytics, Vienna, Austria
  • show less
    DOI: 10.1364/PRJ.495729 Cite this Article Set citation alerts
    Mauro David, Davide Disnan, Elena Arigliani, Anna Lardschneider, Georg Marschick, Hanh T. Hoang, Hermann Detz, Bernhard Lendl, Ulrich Schmid, Gottfried Strasser, Borislav Hinkov, "Advanced mid-infrared plasmonic waveguides for on-chip integrated photonics," Photonics Res. 11, 1694 (2023) Copy Citation Text show less
    References

    [1] S. S. Brown. Absorption spectroscopy in high-finesse cavities for atmospheric studies. Chem. Rev., 103, 5219-5238(2003).

    [2] M. E. Webber, M. Pushkarsky, C. K. N. Patel. Optical detection of chemical warfare agents and toxic industrial chemicals: simulation. J. Appl. Phys., 97, 113101(2005).

    [3] R. Kasahara, S. Kino, S. Soyama, Y. Matsuura. Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomed. Opt. Express, 9, 289-302(2018).

    [4] I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, A. Aksnes. A review of optical methods for continuous glucose monitoring. Appl. Spectrosc. Rev., 54, 543-572(2019).

    [5] L. Flannigan, L. Yoell, C.-q. Xu. Mid-wave and long-wave infrared transmitters and detectors for optical satellite communications—a review. J. Opt., 24, 043002(2022).

    [6] B. Hinkov, F. Pilat, L. Lux, P. L. Souza, M. David, A. Schwaighofer, D. Ristanić, B. Schwarz, H. Detz, A. M. Andrews, B. Lendl, G. Strasser. A mid-infrared lab-on-a-chip for dynamic reaction monitoring. Nat. Commun., 13, 4753(2022).

    [7] A. Dabrowska, A. Schwaighofer, S. Lindner, B. Lendl, B. Lendl. Mid-IR refractive index sensor for detecting proteins employing an external cavity quantum cascade laser-based Mach-Zehnder interferometer. Opt. Express, 28, 36632-36642(2020).

    [8] A. Dabrowska, M. David, S. Freitag, A. M. Andrews, G. Strasser, B. Hinkov, A. Schwaighofer, B. Lendl. Broadband laser-based mid-infrared spectroscopy employing a quantum cascade detector for milk protein analysis. Sens. Actuators B, 350, 130873(2022).

    [9] R. Martini, E. A. Whittaker. Quantum cascade laser-based free space optical communications. J. Opt. Fiber Commun. Rep., 2, 279-292(2005).

    [10] X. Pang, O. Ozolins, L. Zhang, R. Schatz, A. Udalcovs, X. Yu, G. Jacobsen, S. Popov, J. Chen, S. Lourdudoss. Free-space communications enabled by quantum cascade lasers. Phys. Status Solidi A, 218, 2000407(2021).

    [11] H. Dely, T. Bonazzi, O. Spitz, E. Rodriguez, D. Gacemi, Y. Todorov, K. Pantzas, G. Beaudoin, I. Sagnes, L. Li, A. G. Davies, E. H. Linfield, F. Grillot, A. Vasanelli, C. Sirtori. 10 Gbit s−1 free space data transmission at 9 μm wavelength with unipolar quantum optoelectronics. Laser Photon. Rev., 16, 2100414(2022).

    [12] Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett., 98, 181106(2011).

    [13] B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, F. Capasso. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photon., 4, 1225-1231(2017).

    [14] H. Knötig, B. Hinkov, R. Weih, S. Höfling, J. Koeth, G. Strasser. Continuous-wave operation of vertically emitting ring interband cascade lasers at room temperature. Appl. Phys. Lett., 116, 131101(2020).

    [15] A. Delga. Quantum cascade detectors: a review. Mid-Infrared Optoelectronics, 337-377(2020).

    [16] G. Marschick, M. David, E. Arigliani, N. Opačak, B. Schwarz, M. Giparakis, A. Delga, M. Lagree, T. Poletti, V. Trinite, A. Evirgen, B. Gerard, G. Ramer, R. Maulini, J. Butet, S. Blaser, A. M. Andrews, G. Strasser, B. Hinkov. High-responsivity operation of quantum cascade detectors at 9 μm. Opt. Express, 30, 40188-40195(2022).

    [17] B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, G. Strasser. A bi-functional quantum cascade device for same-frequency lasing and detection. Appl. Phys. Lett., 101, 191109(2012).

    [18] B. Schwarz, D. Ristanic, P. Reininger, T. Zederbauer, D. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser. High performance bi-functional quantum cascade laser and detector. Appl. Phys. Lett., 107, 071104(2015).

    [19] B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat. Commun., 5, 4085(2014).

    [20] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [21] H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, J. Hu. Mid-infrared integrated photonics on silicon: a perspective. J. Nanophotonics, 7, 393-420(2018).

    [22] A. Yadav, A. M. Agarwal. Integrated photonic materials for the mid-infrared. Int. J. Appl. Glass Sci., 11, 491-510(2020).

    [23] V. M. Lavchiev, B. Jakoby. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing. IEEE J. Sel. Top. Quantum Electron., 23, 452-463(2017).

    [24] S. Jung, D. Palaferri, K. Zhang, F. Xie, Y. Okuno, C. Pinzone, K. Lascola, M. A. Belkin. Homogeneous photonic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides on an InP platform. Optica, 6, 1023-1030(2019).

    [25] A. Osman, M. Nedeljkovic, J. S. Penades, Y. Wu, Z. Qu, A. Z. Khokhar, K. Debnath, G. Z. Mashanovich. Suspended low-loss germanium waveguides for the longwave infrared. Opt. Lett., 43, 5997-6000(2018).

    [26] Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, H. P. Herzig. Low-loss germanium strip waveguides on silicon for the mid-infrared. Opt. Lett., 37, 2883-2885(2012).

    [27] J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, G. Z. Mashanovich. Suspended silicon waveguides for long-wave infrared wavelengths. Opt. Lett., 43, 795-798(2018).

    [28] J.-M. Fedeli, S. Nicoletti. Mid-infrared (mid-IR) silicon-based photonics. Proc. IEEE, 106, 2302-2312(2018).

    [29] T. Lewi, A. Katzir. Silver halide single-mode strip waveguides for the mid-infrared. Opt. Lett., 37, 2733-2735(2012).

    [30] A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, J. Charrier. Optical characterization at 7.7 μm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Opt. Express, 24, 23109-23117(2016).

    [31] C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, L. Tong. CdTe microwires as mid-infrared optical waveguides. Opt. Express, 26, 10944-10952(2018).

    [32] R. Wang, P. Täschler, Z. Wang, E. Gini, M. Beck, J. Faist. Monolithic integration of mid-infrared quantum cascade lasers and frequency combs with passive waveguides. ACS Photon., 9, 426-431(2022).

    [33] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, C. Koos. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).

    [34] T. Holmgaard, S. I. Bozhevolnyi. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B, 75, 245405(2007).

    [35] T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux. Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization. Appl. Phys. Lett., 92, 011124(2008).

    [36] H.-S. Chu, P. Bai, E.-P. Li, W. R. J. Hoefer. Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics, 6, 591-597(2011).

    [37] S. Law, V. Podolskiy, D. Wasserman. Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics. J. Nanophotonics, 2, 103-130(2013).

    [38] J. Divya, S. Selvendran, A. S. Raja, A. Sivasubramanian. Surface plasmon based plasmonic sensors: a review on their past, present and future. Biosens. Bioelectron. X, 11, 100175(2022).

    [39] X. Wang, S.-C. Huang, S. Hu, S. Yan, B. Ren. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys., 2, 253-271(2020).

    [40] N. C. Panoiu, W. E. I. Sha, D. Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. J. Opt., 20, 083001(2018).

    [41] A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, S. I. Bozhevolnyi. Dielectric-loaded plasmonic waveguide components: going practical. Laser Photon. Rev., 7, 938-951(2013).

    [42] F. Pilat, B. Schwarz, B. Baumgartner, D. Ristanić, H. Detz, A. M. Andrews, B. Lendl, G. Strasser, B. Hinkov. Beyond Karl Fischer titration: a monolithic quantum cascade sensor for monitoring residual water concentration in solvents. Lab Chip, 23, 1816-1824(2023).

    [43] J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W. T. Masselink. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt., 51, 6789-6798(2012).

    [44] B. Hinkov, F. Fuchs, W. Bronner, K. Kohler, J. Wagner. Current- and temperature-induced beam steering in 7.8-μm emitting quantum-cascade lasers. IEEE J. Quantum Electron., 44, 1124-1128(2008).

    [45] M. David, A. Dabrowska, M. Sistani, I. C. Doganlar, E. Hinkelmann, H. Detz, W. M. Weber, B. Lendl, G. Strasser, B. Hinkov. Octave-spanning low-loss mid-IR waveguides based on semiconductor-loaded plasmonics. Opt. Express, 29, 43567-43579(2021).

    [46] H. Ma, A. K.-Y. Jen, L. R. Dalton. Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater., 14, 1339-1365(2002).

    [47] J. Clark, G. Lanzani. Organic photonics for communications. Nat. Photonics, 4, 438-446(2010).

    [48] S. Tsuda, S. Yamaguchi, Y. Kanamori, H. Yugami. Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes. Opt. Express, 26, 6899-6915(2018).

    [49] E. Motaharifar, R. G. Pierce, R. Islam, R. Henderson, J. W. P. Hsu, M. Lee. Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials. J. Infrared Millim. THz Waves, 39, 93-104(2018).

    [50] M. David, D. Disnan, A. Lardschneider, D. Wacht, H. T. Hoang, G. Ramer, H. Detz, B. Lendl, U. Schmid, G. Strasser, B. Hinkov. Structure and mid-infrared optical properties of spin-coated polyethylene films developed for integrated photonics applications. Opt. Mater. Express, 12, 2168-2180(2022).

    [51] D. R. Smith, E. V. Loewenstein. Optical constants of far infrared materials. 3: plastics. Appl. Opt., 14, 1335-1341(1975).

    [52] M. Geiger, M. Hitzler, J. Iberle, C. Waldschmidt. A dielectric lens antenna fed by a flexible dielectric waveguide at 160 GHz. 11th European Conference on Antennas and Propagation (EUCAP), 3380-3383(2017).

    [53] H. I. Song, H. Jin, H.-M. Bae. Plastic straw: future of high-speed signaling. Sci. Rep., 5, 16062(2015).

    [54] B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng. Hybrid terahertz plasmonic waveguide for sensing applications. Opt. Express, 21, 21087-21096(2013).

    [55] P. Berini, R. Charbonneau, N. Lahoud, G. Mattiussi. Characterization of long-range surface-plasmon-polariton waveguides. J. Appl. Phys., 98, 043109(2005).

    [56] S.-T. Huang, C.-C. Lai, F.-W. Sheu, W.-S. Tsai. Characterization of long-range plasmonic waveguides at visible to near-infrared regime. AIP Adv., 7, 125221(2017).

    [57] T. Nikolajsen, K. Leosson, I. Salakhutdinov, S. I. Bozhevolnyi. Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths. Appl. Phys. Lett., 82, 668-670(2003).

    [58] R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, U. Levy. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs). Opt. Express, 22, 22009-22017(2014).

    [59] A. V. Krasavin, A. V. Zayats. Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv. Opt. Mater., 3, 1662-1690(2015).

    [60] B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, J. R. Krenn. Dielectric stripes on gold as surface plasmon waveguides: bends and directional couplers. Appl. Phys. Lett., 91, 081111(2007).

    [61] K. Q. Nguyen, P. Cousin, K. Mohamed, M. Robert, A. El-Safty, B. Benmokrane. Effects of ultraviolet radiation on recycled and virgin HDPE corrugated pipes used in road drainage systems. J. Polym. Environ., 30, 3391-3408(2022).

    [62] J. Hafner, M. Teuschel, J. Schrattenholzer, M. Schneider, U. Schmid. Optimized batch process for organic MEMS devices. Proceedings, 2, 904(2018).

    [63] J.-P. Tetienne, A. Bousseksou, D. Costantini, R. Colombelli, A. Babuty, I. Moldovan-Doyen, Y. De Wilde, C. Sirtori, G. Beaudoin, L. Largeau, O. Mauguin, I. Sagnes. Injection of midinfrared surface plasmon polaritons with an integrated device. Appl. Phys. Lett., 97, 211110(2010).

    Mauro David, Davide Disnan, Elena Arigliani, Anna Lardschneider, Georg Marschick, Hanh T. Hoang, Hermann Detz, Bernhard Lendl, Ulrich Schmid, Gottfried Strasser, Borislav Hinkov, "Advanced mid-infrared plasmonic waveguides for on-chip integrated photonics," Photonics Res. 11, 1694 (2023)
    Download Citation