• Photonics Research
  • Vol. 9, Issue 2, 171 (2021)
Xueying Jin1、3, Xin Xu1、4, Haoran Gao1, Keyi Wang2, Haojie Xia1, and Liandong Yu1、*
Author Affiliations
  • 1School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China
  • 2Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
  • 3e-mail: xyjin007@hfut.edu.cn
  • 4e-mail: xuxin@hfut.edu.cn
  • show less
    DOI: 10.1364/PRJ.408492 Cite this Article Set citation alerts
    Xueying Jin, Xin Xu, Haoran Gao, Keyi Wang, Haojie Xia, Liandong Yu. Controllable two-dimensional Kerr and Raman–Kerr frequency combs in microbottle resonators with selectable dispersion[J]. Photonics Research, 2021, 9(2): 171 Copy Citation Text show less
    References

    [1] P. Delhaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [2] W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 43, 2002-2005(2018).

    [3] Z. Newman, V. N. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. A. Westly, B. Ilic. Architecture for the photonic integration of an optical atomic clock. Nat. Photonics, 6, 680-685(2019).

    [4] Q. Yang, X. Yi, K. Y. Yang, K. J. Vahala. Stokes solitons in optical microcavities. Nat. Phys., 13, 53-57(2017).

    [5] G. Lin, S. Diallo, J. M. Dudley, Y. K. Chembo. Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators. Opt. Express, 24, 14880-14894(2016).

    [6] M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, M. Loncar. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci. Appl., 9, 1(2020).

    [7] Y. Chen, Z. Zhou, C. Zou, Z. Shen, G. Guo, C. Dong. Tunable Raman laser in a hollow bottle-like microresonator. Opt. Express, 25, 16879-16887(2017).

    [8] Y. Okawachi, M. Yu, V. Venkataraman, P. Latawiec, A. G. Griffith, M. Lipson, M. Loncar, A. L. Gaeta. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett., 42, 2786-2789(2017).

    [9] S. Fujii, T. Kato, R. Suzuki, A. Hori, T. Tanabe. Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. J. Opt. Soc. Am. B, 35, 100-106(2018).

    [10] X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs. ACS Photon., 5, 1943-1950(2018).

    [11] B. Min, L. Yang, K. J. Vahala. Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities. Appl. Phys. Lett., 87, 181109(2005).

    [12] Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, S. N. Chormaic. Degenerate four-wave mixing in a silica hollow bottle-like microresonator. Opt. Lett., 41, 575-578(2016).

    [13] Y. V. Kartashov, M. L. Gorodetsky, A. Kudlinski, D. V. Skryabin. Two-dimensional nonlinear modes and frequency combs in bottle microresonators. Opt. Lett., 43, 2680-2683(2018).

    [14] M. Pollinger, D. Oshea, F. Warken, A. Rauschenbeutel. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett., 103, 053901(2009).

    [15] G. S. Murugan, J. S. Wilkinson, M. N. Zervas. Selective excitation of whispering gallery modes in a novel bottle microresonator. Opt. Express, 17, 11916-11925(2009).

    [16] X. Jin, Y. Dong, K. Wang, H. Jian. Selective excitation and probing of axial modes in a microcylindrical resonator for robust filter. IEEE Photon. Technol. Lett., 28, 1649-1652(2016).

    [17] X. Jin, Y. Dong, K. Wang. Selective excitation of axial modes in a high-Q microcylindrical resonator for controlled and robust coupling. Appl. Opt., 54, 8100-8107(2015).

    [18] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [19] V. Dvoyrin, M. Sumetsky. Bottle microresonator broadband and low-repetition-rate frequency comb generator. Opt. Lett., 41, 5547-5550(2016).

    [20] W. Liang, A. A. Savchenkov, Z. Xie, J. F. McMillan, J. Burkhart, V. S. Ilchenko, C. W. Wong, A. B. Matsko, L. Maleki. Miniature multioctave light source based on a monolithic microcavity. Optica, 2, 40-47(2015).

    [21] D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, S. Soria. Generation of hyper-parametric oscillations in silica microbubbles. Opt. Lett., 40, 4508-4511(2015).

    [22] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

    [23] G. S. Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, M. N. Zervas. Hollow-bottle optical microresonators. Opt. Express, 19, 20773-20784(2011).

    [24] J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, T. J. Kippenberg. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express, 20, 27661-27669(2012).

    [25] Y. Nakagawa, Y. Mizumoto, T. Kato, T. Kobatake, H. Itobe, Y. Kakinuma, T. Tanabe. Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb. J. Opt. Soc. Am. B, 33, 1913-1920(2016).

    [26] F. Shu, P. Zhang, Y. Qian, Z. Wang, S. Wan, C. Zou, G. Guo, C. Dong. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Sci. China Phys. Mech. Astron., 63, 254211(2020).

    [27] C. Bao, J. A. Jaramillovillegas, Y. Xuan, D. E. Leaird, M. Qi, A. M. Weiner. Observation of Fermi–Pasta–Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [28] M. Liu, L. Wang, Q. Sun, S. Li, Z. Ge, Z. Lu, W. Wang, G. Wang, W. Zhang, X. Hu. Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators. Photon. Res., 6, 238-243(2018).

    [29] C. Godey, I. Balakireva, A. Coillet, Y. K. Chembo. Stability analysis of the spatiotemporal Lugiato–Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 063814(2014).

    [30] Y. K. Chembo, I. S. Grudinin, N. Yu. Spatiotemporal dynamics of Kerr–Raman optical frequency combs. Phys. Rev. A, 92, 043818(2015).

    [31] H. A. Haus. Applications of nonlinear fiber optics. Phys. Today, 55, 58-59(2002).

    [32] D. Castellolurbe, E. Silvestre. Comparative analysis of spectral coherence in microresonator frequency combs. Opt. Express, 22, 4678-4691(2014).

    [33] S. V. Suchkov, M. Sumetsky, A. A. Sukhorukov. Frequency comb generation in SNAP bottle resonators. Opt. Lett., 42, 2149-2152(2017).

    [34] K. E. Webb, M. Erkintalo, S. Coen, S. G. Murdoch. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett., 41, 4613-4616(2016).

    [35] M. Sumetsky, Y. Dulashko. SNAP: fabrication of long coupled microresonator chains with sub-angstrom precision. Opt. Express, 20, 27896-27901(2012).

    [36] X. Jin, K. Wang, Y. Dong, M. Wang, H. Gao, L. Yu. Multiple-channel dynamic bandpass filter via radiation modes-assisted transparency in a side-coupled SNAP microcavity. Appl. Phys. Express, 12, 092001(2019).

    [37] G. Lin, R. Martinenghi, S. Diallo, K. Saleh, A. Coillet, Y. K. Chembo. Spectro-temporal dynamics of Kerr combs with parametric seeding. Appl. Opt., 54, 2407-2412(2015).

    Xueying Jin, Xin Xu, Haoran Gao, Keyi Wang, Haojie Xia, Liandong Yu. Controllable two-dimensional Kerr and Raman–Kerr frequency combs in microbottle resonators with selectable dispersion[J]. Photonics Research, 2021, 9(2): 171
    Download Citation