• Chinese Optics Letters
  • Vol. 21, Issue 10, 101301 (2023)
Licheng Wang1, Hongfei Bu1, Yang Chen2、3、4, Zhennan Tian1、*, and Xifeng Ren2、3、4、**
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 3CAS Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • show less
    DOI: 10.3788/COL202321.101301 Cite this Article Set citation alerts
    Licheng Wang, Hongfei Bu, Yang Chen, Zhennan Tian, Xifeng Ren. Nonlinearity-induced localization enhancement in Fibonacci-like waveguide arrays [Invited][J]. Chinese Optics Letters, 2023, 21(10): 101301 Copy Citation Text show less
    References

    [1] X. G. Qiang, T. Loke, A. Montanaro, K. Aungskunsiri, X. Q. Zhou, J. L. O’Brien, J. B. B. Wang, J. C. F. Matthews. Efficient quantum walk on a quantum processor. Nat. Commun., 7, 11511(2016).

    [2] J. P. Keating, N. Linden, J. C. F. Matthews, A. Winter. Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A, 76, 012315(2007).

    [3] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X. M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, I. A. Walmsley. Boson sampling on a photonic chip. Science, 339, 798(2013).

    [4] Y. Lahini, M. Verbin, S. D. Huber, Y. Bromberg, R. Pugatch, Y. Silberberg. Quantum walk of two interacting bosons. Phys. Rev. A, 86, 011603(2012).

    [5] F. Carbone. An electron walks into a quantum bar. Science, 373, 1309(2021).

    [6] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, T. Schaetz. Quantum walk of a trapped ion in phase space. Phys. Rev. Lett., 103, 090504(2009).

    [7] T. Giordani, E. Polino, S. Emiliani, A. Suprano, L. Innocenti, H. Majury, L. Marrucci, M. Paternostro, A. Ferraro, N. Spagnolo, F. Sciarrino. Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett., 122, 020503(2019).

    [8] Y. Wang, B. Y. Xie, Y. H. Lu, Y. J. Chang, H. F. Wang, J. Gao, Z. Q. Jiao, Z. Feng, X. Y. Xu, F. Mei, S. T. Jia, M. H. Lu, X. M. Jin. Quantum superposition demonstrated higher-order topological bound states in the continuum. Light Sci. Appl., 10, 8(2021).

    [9] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, P. Mataloni. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics, 7, 322(2013).

    [10] H. Tang, C. Di Franco, Z. Y. Shi, T. S. He, Z. Feng, J. Gao, K. Sun, Z. M. Li, Z. Q. Jiao, T. Y. Wang, M. S. Kim, X. M. Jin. Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics, 12, 754(2018).

    [11] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492(1958).

    [12] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, Y. Silberberg. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett., 103, 013901(2009).

    [13] J. Ghosh. Simulating Anderson localization via a quantum walk on a one-dimensional lattice of superconducting qubits. Phys. Rev. A, 89, 022309(2014).

    [14] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, Y. Silberberg. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B, 91, 064201(2015).

    [15] D. T. Nguyen, D. A. Nolan, N. F. Borrelli. Localized quantum walks in quasi-periodic Fibonacci arrays of waveguides. Opt. Express, 27, 886(2019).

    [16] Y. Chen, X.-M. Chen, X.-F. Ren, M. Gong, G.-C. Guo. Tight-binding model in optical waveguides: design principle and transferability for simulation of complex photonics networks. Phys. Rev. A, 104, 023501(2021).

    [17] T. Kiss, I. Jex. Photons walk on fractal graphs. Nat. Photonics, 15, 641(2021).

    [18] P. Ribeiro, P. Milman, R. Mosseri. Aperiodic quantum random walks. Phys. Rev. Lett., 93, 190503(2004).

    [19] D. T. Nguyen, T. A. Nguyen, R. Khrapko, D. A. Nolan, N. F. Borrelli. Quantum walks in periodic and quasiperiodic Fibonacci fibers. Sci. Rep., 10, 10(2020).

    [20] M. A. Pires, S. M. D. Queiros. Quantum walks with sequential aperiodic jumps. Phys. Rev. E, 102, 15(2020).

    [21] L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, A. Szameit. Nonlinearity-induced photonic topological insulator. Science, 370, 701(2020).

    [22] Z. Z. Li, L. Wang, H. Fan, Y. H. Yu, H. B. Sun, S. Juodkazis, Q. D. Chen. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl., 9, 7(2020).

    [23] X. Q. Liu, Y. L. Zhang, Q. K. Li, J. X. Zheng, Y. M. Lu, S. Juodkazis, Q. D. Chen, H. B. Sun. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing. Photonix, 3, 13(2022).

    [24] J. Lapointe, J.-P. Berube, Y. Ledemi, A. Dupont, V. Fortin, Y. Messaddeq, R. Vallee. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl., 9, 64(2020).

    [25] F. Yu, X.-L. Zhang, Z.-N. Tian, Q.-D. Chen, H.-B. Sun. General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett., 127, 253901(2021).

    [26] Y. Zhao, Y. Chen, Z.-S. Hou, B. Han, H. Fan, L.-H. Lin, X.-F. Ren, H.-B. Sun. Polarization-dependent Bloch oscillations in optical waveguides. Opt. Lett., 47, 617(2022).

    [27] X.-L. Zhang, F. Yu, Z.-G. Chen, Z.-N. Tian, Q.-D. Chen, H.-B. Sun, G. Ma. Non-Abelian braiding on photonic chips. Nat. Photonics, 16, 390(2022).

    [28] Y.-K. Sun, X.-L. Zhang, F. Yu, Z.-N. Tian, Q.-D. Chen, H.-B. Sun. Non-Abelian Thouless pumping in photonic waveguides. Nat. Phys., 18, 1080(2022).

    [29] D. N. Christodoulides, F. Lederer, Y. Silberberg. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 424, 817(2003).

    [30] P. S. Salter, M. J. Booth. Adaptive optics in laser processing. Light Sci. Appl., 8, 16(2019).

    [31] Z.-Z. Li, X.-Y. Li, F. Yu, Q.-D. Chen, Z.-N. Tian, H.-B. Sun. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses. Opt. Lett., 46, 520(2021).

    [32] T. Will, J. Guan, P. S. Salter, M. J. Booth. Trimming laser-written waveguides through overwriting. Opt. Express, 28, 28006(2020).

    [33] L. C. Wang, Y. Chen, M. Gong, F. Yu, Q. D. Chen, Z. N. Tian, X. F. Ren, H. B. Sun. Edge state, localization length, and critical exponent from survival probability in topological waveguides. Phys. Rev. Lett., 129, 173601(2022).

    [34] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, Y. Silberberg. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett., 100, 013906(2008).

    [35] C. M. Huang, C. Shang, J. Li, L. W. Dong, F. W. Ye. Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice. Opt. Express, 27, 6259(2019).

    [36] S. Longhi. Topological Anderson phase in quasi-periodic waveguide lattices. Opt. Lett., 45, 4036(2020).

    Licheng Wang, Hongfei Bu, Yang Chen, Zhennan Tian, Xifeng Ren. Nonlinearity-induced localization enhancement in Fibonacci-like waveguide arrays [Invited][J]. Chinese Optics Letters, 2023, 21(10): 101301
    Download Citation