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Based on the one-dimensional periodic and Fibonacci-like waveguide arrays, we experimentally investigate localized quan-
tum walks (QWs), both in the linear and nonlinear regimes. Unlike the ballistic transport behavior in conventional random
QWs, localization of QWs is obtained in the Fibonacci-like waveguide arrays both theoretically and experimentally. Moreover,
we verify the enhancement of the localization through nonlinearity-induced effect. Our work provides a valid way to study
localization enhancement in QWs, which might broaden the understanding of nonlinearity-induced behaviors in quasi-
periodic systems.
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1. Introduction

Over the past decades, quantum walks (QWs) have evolved into
an essential model applied in the field of quantum computing[1],
quantum algorithms[2], and quantum simulations[3], where
monumental progress has been made. Hitherto, discrete-time
and continuous-time QWs have been studied both theoretically
and experimentally in various systems, including cold atoms[4],
electrons[5], trapped ions[6], and photons[7,8]. Notably, photonic
systems, in particular integrated optical waveguides, construct a
multifunctional and easily accessible platform for performing
discrete-time or continuous-time QWs, with the help of cascade
beam splitters[9] or waveguide arrays[10]. One of the exclusive
phenomena in QWs is the localization caused by the existence
of disorder, known as Anderson localization[11]. By disrupting
the periodicity of the system in time or space, the dynamics
of the system can be determined, and the localization effect
can be maintained. Due to the advantage of robust information
transfer, such effects have been utilized to protect the transmis-
sion of quantum states in quantum photonic systems[12–17].
The quasi-periodic systems, which are neither periodic nor

disordered, exhibit critical nature and localized QWs
(LQWs)[13,15,17]. Distribution of the lattice potential or tunnel-
ing of such systems are modulated quasi-periodically, but lack

translational symmetry. One of the models is based on the
Fibonacci sequence, whose modulation strength is of the golden
ratio 1.618[18]. LQWs have been theoretically proposed in
Fibonacci-like waveguide arrays (FWAs) with diagonal and
off-diagonal quasi-periodic modulations, and in Ref. [15,19],
both the lattice potential and tunneling were tuned. However,
as proposed in previous works, QWs on Fibonacci tight-binding
models are actually not localized. The eigenstates are critical and
wave packet dynamics is known to be diffusive[12,20]. Although a
multicore fiber platform has been introduced to experimentally
demonstrate the LQWs, which proves LQWs could be observed
due to the short propagation, the sample preparation process is a
little bit complicated[19]. Also, study on the LQW effect, particu-
larly the influence of nonlinear-induced interaction[21], still
remains to be further verified. Thanks to the development of
precise processing technique, an ultrafast laser micromachining
method has been proposed. It has the capability of generating
refractive index change and leaving three-dimensional tracks
inside transparent materials and hence yields a favorable tool
for direct writing optical waveguides[22–28]. Via fast prototyping
and controlling the spacing between evanescently coupled wave-
guides, FWAs with both diagonal and off-diagonal modulations
can be realized. The waveguide transmission length represents
the evolution time, while the distribution of energy of the
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waveguide end face at certain length reflects the real-time evolu-
tionary dynamics[10].
In this Letter, we experimentally investigate LQWs in FWAs

with both diagonal and off-diagonal modulations. By monitor-
ing the light propagation dynamics in periodic waveguide arrays
(PWAs) and FWAs, we find that the localization of QWs can be
obtained in FWAs compared to the discrete diffraction patterns
observed in conventional random QWs. Moreover, as we
increase the input peak power, we verify that the localization
can be further enhanced in our FWAs when the nonlinearity
of light is taken into account.

2. Model and Method

The proposed FWAs consist of two types of waveguides with dif-
ferent propagation constants and the same separation distances,
as shown in Fig. 1(a). Our quasi-periodic system is described by
a tight-binding Hamiltonian that satisfies the following discrete
nonlinear Schrödinger equation[29]:

i
∂ψn

∂z
� βnψn � Cn,n−1ψn−1 � Cn,n�1ψn�1 � γjψnj2ψn = 0,

�1�

where n is the site index, ψ is the hopping amplitude, z is the
space coordinate, β is the propagation constant, and γ is the non-
linear coefficient. Note that γ indicates the strength of nonline-
arity modulation, and the system remains in the linear regime
when γ = 0.
In our experiment, we use the femtosecond laser-inscribing

technique to fabricate the proposed PWAs and FWAs [shown
in Fig. 1(b)], at a laser pulse duration of 239 fs, repetition rate
of 1 MHz, and working wavelength of 1030 nm. A liquid crys-
tal-based spatial light modulator (LC-SLM, HAMAMATSU
X13138-type) is introduced to our experiment to manipulate

both the shape and the size of the beam focal spot so as to
increase the circularity of the cross section of the wave-
guides[30,31]. Laser pulses are focused into the borosilicate glass
substrate through a 50× objective lens (NA 0.75) assisted with
high-precision three-axis air-bearing linear motion stage
(Aerotech Inc.) motorizing the substrate. Our FWA is composed
of all elements of the Fibonacci series from the first order to the
sixth order arranged in sequence, where the total number of the
waveguides is 39, as presented in Fig. 1(c), while compared to the
FWA, the PWA consists of 39 identical waveguides instead. In
order to achieve waveguides with different effective refractive
indices, the substrate is motorized at constant velocities of 10
and 40 mm/s. The relationship between mode field diameters
and the scanning speeds is shown in Fig. 2(a).
In order to characterize the change of the effective refractive

indices for the waveguides fabricated at different scanning
speeds, we introduce a directional coupler (DC) consisting of
two evanescently coupled waveguides. Note that when injecting
light into one arm of the DC, the power splitting ratio α can be
defined as stated below, based on a coupled mode equation[32],

α =
P2

P1 � P2
= σ2 · sin2

�
κ

σ
· d� ϕ

�
, (2)

and it is important to know the values of coupling coefficient κ
and coupling length d, which influence the splitting ratio. For a
DC with a coupling length d, the splitting ratio changes when
applying a dephasing term σ to alter the amplitude,

σ = 1=

������������������������
1�

�
Δβ
2κ

�
2

s
: (3)

Finally, the refractive index changeΔn for the two arms of the
DC can be determined by

Fig. 1. (a) Scheme of FWAs. Light blue and dark red denote waveguides with
different n. F1 to F6 indicate the first to sixth orders of the Fibonacci sequen-
ces. (b) Schematic of the experimental setup used for verifying QWs in differ-
ent waveguide arrays; both of the propagation dynamics and end-face energy
distributions can be acquired by corresponding high-resolution microscopic
observation systems with an sCMOS camera and CCD, respectively. Note that
the centermost waveguide is extended from the whole array for easy inject-
ing light. (c) Geometrically symmetrical FWAs designed with all basic elements
from F1 to F6. The red arrow denotes the specific waveguide for injecting light.

Fig. 2. (a) Relationship between mode field diameters (black cubes), coupling
coefficients between two evanescently coupled waveguides, where one is
scanned at 40 mm/s and the other at 10 to 50 mm/s, respectively (red tri-
angles), and the scanning speeds. Mode field distributions of certain scanning
speeds are shown. The scale bar is 2 μm. (b) Relationship between splitting
ratio and coupling length for a symmetry DC (both arms are scanned at
40 mm/s) and an asymmetry DC (one arm is scanned at 10 mm/s, and the
other is scanned at 40 mm/s); black cubes and yellow triangles denote exper-
imental data at the scanning speeds of 10 and 40 mm/s, respectively, and the
corresponding sinusoidal lines are fitted results.
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Δn =
λoΔβ
2π

: (4)

For a symmetry DC with two identical waveguides fabricated
at a scanning speed of 40 mm/s, the maximum power coupling
ratio σ2 is approximately 1. The yellow triangles stand for cou-
pling ratios acquired from a series of DCs with various coupling
lengths ranging from 0 to 3 mm [shown in Fig. 2(b)]. When one
of the waveguides of a DC is fabricated at the scanning speed of
10 mm/s, the maximum power coupling ratio is altered by the
asymmetry, and the related refractive index change Δn can be
used to tune the splitting ratio. According to the relationship
between the power-splitting ratio and the coupling length,
we can learn that σ2 is 0.9875 for waveguides fabricated at
40 mm/s, while it is 0.3221 for those fabricated at 10 mm/s.
Note that as the scanning speed increases, the related coupling
coefficient for the waveguides follows an exponential decay
[fitted red dashed line shown in Fig. 2(a)]. The coupling coeffi-
cients are 0.9901 and 1.7210 for waveguides fabricated at 40
and 10 mm/s, respectively. Then we come to the conclusion
that the difference between the effective refractive index for
the scanning speed at 10 and 40 mm/s in our experiment is
approximately 0.0005, which is also used for further numerical
simulations.

3. Results and Discussion

We study QWs in quasi-periodic waveguide arrays with
Fibonacci-like modulation by injecting light into a single site.
Using a beam propagation method (BPM)[33], with simple
parameters like an effective refractive index, coupling distance,
and coupling strength between the neighboring evanescent cou-
pling waveguides, we can numerically predict the behaviors of
the light propagation dynamics not only in the PWAs, but also
in our quasi-periodic FWAs, even when nonlinear perturbation
is taken into account. It is necessary to emphasis that single-
photon QWs exhibit similar behaviors compared to classical
wave dynamics due to the fact that evolution of the coherent
states can be viewed as multiple independent single-photon
QWs; thus the energy distributions follow the same rule as the
detecting probabilities of photon distribution at certain output
end faces[33].
We show numerical calculation results of QWs in our

designed PWA and FWA. In the PWA, the total number of
waveguides is set to be 39, which ensures the size of the PWA
is the same as that of the FWA. The single-site excitation is
applied to the centermost waveguides of the PWA and FWA.
As shown in Fig. 1(c), an FWAwill transform into a PWA when
the basic composition waveguide F1 and F2 are identical. The
waveguide separation distance between near-neighboring wave-
guides is fixed at 8 μm, and the effective refractive index differ-
ence between F1 and F2 is set as 0.0005 in the FWA, as stated
earlier. In a PWA, random QWs could be observed, and the
light slowly diffuses as it propagates. Compared to the discrete
diffraction pattern shown in Fig. 3(a1), the light propagation

dynamics in the FWA is different. As the propagation distance
increases, the transmission of light in the FWA is “localized” in
the range of a few waveguides at the center [shown in Fig. 3(b1)].
To provide a thorough view of the propagation dynamics,

we inject light at a wavelength of 800 nm into the single lattice
site from the centermost waveguide. The evolution of the wave
dynamics is revealed by observing the scattered light at the top
of the sample [shown in Fig. 1(b)]. The strength of the scattered
signal is locally proportional to the intensity of the propagating
light at a specific position[33]. As a result, we can obtain the entire
photon evolution dynamics of the system by observing the scat-
tered signal of the chain instead of intercepting different lengths.
Considering that our working wavelength is near-infrared, we
use a coaxial imaging system with an Andor Zyla 5.5 sCMOS
camera, which has a high resolution of 5.5 megapixels and ideal
ultralow noise performance, to fully characterize and better ana-
lyze the weak surface scattered signal. Due to the limited field
of view of the observing system, we cannot obtain the whole
evolution dynamics at one certain position. Hence, we choose
to take a series of pictures at different propagation lengths along
the propagation direction and finally stitch them together.
Finally, the recovered evolution dynamics can be obtained
and fully presented in Figs. 3(a) and 3(b).
In a PWA, the effective refractive index of F1 and F2 remains

the same, and random QWs could be experimentally observed,
where the light slowly symmetrically diffuses to the whole arrays
as they propagate [shown in Fig. 3(a2)] and exhibits good agree-
ment with the numerical simulations presented in Fig. 3(a1).
As for QWs in the FWAs, with the help of direct imaging of
the entire light propagation process, the localization of light
is clearly presented, and the experimental result [shown in
Fig. 3(b2)] satisfies the previous prediction we made. We obtain
intensity distribution not only from the surface scattered light of
the waveguide arrays, but also from the end-face output. The
intensity distribution of the end-face output is obtained using
an objective lens and a CCD to directly monitor the end face

Fig. 3. Propagation dynamics of single excitation. (a1) Theoretical and
(a2) experimental results for periodic waveguide arrays, where F1 and F2
are identical. (b1) Theoretical and (b2) experimental results for FWAs, where
F1 and F2 are different. The total length of the propagation is 20 mm, and the
coordinate y denotes the propagation direction.
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of different samples with coupling lengths of 3, 11, and 18 mm,
respectively [shown in Fig. 4]. Our experimental results indicate
that the end-face output behaves similar to the surfaced scat-
tered light energy distribution and prove that localization of
light could be observed in FWAs at a short propagation
distance[12].
The effect of nonlinearity on localized states in our FWAs is

studied by a single-site excitation. We excite our FWAs to
exhibit self-focusing by carefully controlling the injected energy
into the centermost waveguide, which ensures that the experi-
ments are done in the weak nonlinear regime. According to
our numerical simulations, nonlinear perturbation will signifi-
cantly affect the propagation constant of the waveguide due
to the Kerr nonlinear effect[21,34], and therefore leads to
enhanced localization in our FWAs, where the related nonlinear
coefficient γ is set to be 0.2 and 0.5, respectively [shown in
Figs. 4(b1) and 4(b2)]. Note that the larger the perturbation
is, the stronger the localization will be. Our experimental results
prove once again that the localized mode exhibits a significant
response to nonlinearity. When the input peak power reaches
1.2 MW, enhanced localization of QWs could be observed, as
is shown in Figs. 4(b2) to 4(b7). After increasing the input peak
power to 1.9MW, the localization becomes stronger, and only in
the centermost waveguide will the output energy be observed at
all measured coupling lengths [shown in Figs. 4(c2) to 4(c7)].
These results can be explained according to the theory raised
in Ref. [34]. When the refractive index increases due to the non-
linear effect but the physical sizes of the cores are not changed,
the mode field diameter is reduced. As a result, light is strongly
confined in the cores. Coupling this effect with deterministic dis-
order by a quasi-periodic structure, enhancement of LQW can
be realized, as shown in Figs. 4(b) and 4(c). In fact, when light
walks among PWAs, such nonlinearity also leads to the locali-
zation effect, and the threshold of nonlinear effect in FWAs is

lower due to a largermismatch of propagation constant and cou-
pling coefficient.

4. Conclusion

In summary, we have studied LQWs in one-dimensional FWAs
with both diagonal and off-diagonal quasi-periodic modula-
tions. We implement an effective change in the waveguide
refractive index by controlling the laser scanning speed, thus
modulating the propagation constant and coupling coefficient.
Through direct imaging, we monitor the entire process of QWs
in the waveguide arrays with a single-site excitation and validate
LQWs in the FWAs. Furthermore, we experimentally demon-
strate enhanced LQWs when weak nonlinear light is induced.
As previously stated, although we mainly focus on Fibonacci-
like modulations in this work, the proposed ideas can be gener-
ally available for studying LQWs in other quasi-periodic struc-
tures[20]. Our work may contribute a new foundation to the
study of localization enhancement in QWs and sufficiently
broaden the understanding of nonlinear-induced behaviors in
quasi-periodic systems[35,36].
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Fig. 4. Propagation dynamics in the waveguide arrays without/with nonlinear perturbation excitation. (a1), (b1), and (c1) show simulated results for injecting linear
(γ = 0), nonlinear (γ = 0.2), and strongly nonlinear (γ = 0.5) lights, respectively. (a2), (a4), and (a6); (b2), (b4), and (b6); and (c2), (c4), and (c6) are experimental results
of the end-face energy distributions for the waveguide arrays at different coupling lengths (3, 11, and 18 mm), while (a3), (a5), and (a7); (b3), (b5), and (b7); and (c3),
(c5), and (c7) are the extracted normalized strengths for the energy distributions. The nonlinear coefficient γ is in the unit of m-1 W-1, and we choose the dimen-
sionless quantities for simulations. The coordinate y denotes the propagation direction.
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