[1] B. Jaffe, H. Jaffe, W. R. Cook. Piezoelectric Ceramics(1971).
[2] S. W. Choi, T. R. Shrout, S. J. Jang, A. S. Bhalla. Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Mater. Lett., 8, 253(1989).
[3] D. Lin, Z. R. Li, F. Li, Z. Xu, X. Yao. Characterization and piezoelectric thermal stability of PIN-PMN-PT ternary ceramics near the morphotropic phase boundary. J. Alloy. Compd., 489, 115(2010).
[4] A. S. Bhalla, R. Guo, E. F. Alberta. Some comments on the morphotropic phase boundary and property diagrams in ferroelectric relaxor systems. Mater. Lett., 54, 264(2002).
[5] A. Sanchez, C. Zambrano, L. M. Procel, A. Stashans. Structural and Electronic Properties of PZT. Conference on Advanced Organic and Inorganic Optical Materials., 310(2002).
[6] V. A. Isupov. Reasons for discrepancies relating to the range of coexistence of phases in lead zirconate–titanate solid solutions. Sov. Phys. Solid State., 22, 98(1980).
[7] V. A. Isupov. Phases in the PZT ceramics. Ferroelectrics, 266, 91(2002).
[8] Q. H. Guo, L. T. Hou, F. Li, F. Q. Xia, P. B. Wang, H. Hao, H. J. Sun, H. X. Liu, S. J. Zhang. Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)-O3-PbTiO3 ceramics. J. Am. Ceram. Soc., 102, 7428(2019).
[9] H. Fu, R. E. Cohen. Polarization rotation mechanism for ultra-high electromechanical response in single-crystal piezoelectrics. Nature, 403, 281(2000).
[10] M. Promsawat, A. Watcharapasorn, Z.-G. Ye, S. Jiansirisomboon. Enhanced dielectric and ferroelectric properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics by ZnO modification. J. Am. Ceram. Soc., 98, 848(2015).
[11] C. He, Z. J. Wang, X. Z. Li, Y. Liu, D. Q. Shen, T. Li, X. F. Long. Synthesis, structure and electric properties of Pb(Yb1/2Nb1/2)- O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics. J. Phys. D. Appl. Phys., 45, 105305-1(2012).
[12] S. W. Choi, R.T. R. Shrout, S. J. Jang, A. S. Bhalla. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics, 100, 29(1989).
[13] A. Benayad, D. Kobor, L. Lebrun, B. Guiffard, D. Guyomar. Characteristics of Pb[(Zn1/3Nb2/3)0.955Ti0.045]O3 single crystals versus growth method. J. Cryst. Growth, 270, 137(2004).
[14] J.A. Lima, W. Paraguassu, P. T. C. Freire, A. G. Souza Filho, J. A. Eiras. Lattice dynamics and low-temperature Raman spectroscopy studies of PMN-PT relaxors. J. Raman Spectrosc., 40, 1144(2009).
[15] Z. Li, L. Zhang, X. Yao. Dielectric properties anomaly of (1 − x)-Pb(Ni1/3Nb2/3)O3-xPbTiO3 ceramics near the morphotropic phase boundary. J. Mater. Res., 16, 834(2001).
[16] Z. Z. Xi, Q. Q. Bu, P. Y. Fang, W. Long, X. J. Li. Effect of frequency and temperature on dielectric relaxation of [111]-oriented PMN-32PT single crystals. J. Alloy. Compd., 618, 14(2015).
[17] R. Guo, C.-A. Wang, A. K. Yang. Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics. J. Eur. Ceram. Soc., 31, 605(2011).
[18] Y. L. Qin, F. X. Han, P. K. Yan, Y. Q. Wang, Y. C. Zhang, S. J. Zhang. Fluorescence intensity ratio (FIR) analysis of the temperature sensing properties in transparent ferroelectric PMN-PT: Pr3+ ceramic. Ceram. Int., 47, 24092(2021).
[19] P. Kumar, S. Sharma, O. P. Thakur, C. Prakash, T. C. Goel. Dielectric, piezoelectric and pyroelectric properties of PMN–PT (68:32) system. Ceram. Int., 30, 585(2004).
[20] P. Augustine, M. S. R. Rao. Realization of device quality PMN–PT ceramics using modulated heating method. Ceram. Int., 41, 11984(2015).
[21] Z. Q. Zhang, F. Li, R. M. Chen, T. F. Zhang, X. D. Cao, S. J. Zhang, T. R. Shrout, H. R. Zheng, K. K. Shung, M. S. Humayun, W. B. Qiu, Q. F. Zhou. High-performance ultrasound needle transducer based on modified pmn-pt ceramic with ultrahigh clamped dielectric permittivity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 65, 223(2018).
[22] A. Hussain, Abid Hussaina, N. Sinha, S. Bhandari, H. Yadav, B. Kumar. Synthesis of 0.64Pb(Mg1/3Nb2/3)O3-0.36PbTiO3 ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications. J. Asi. Ceram. Soc., 4, 337(2016).
[23] F. F. Wang, H. N. Wang, Q. S. Yang, Z. X. Zhang, K. Yan. Fine-grained relaxor ferroelectric PMN-PT ceramics prepared using hot-press sintering method. Ceram. Int., 47, 15005(2021).
[24] V. Kalem, W. Y. Shih, W. H. Shih. Dielectric and piezoelectric properties of PMN-PT ceramics doped with strontium. Ceram. Int., 44, 2835(2018).
[25] M. Unruan, S. Unruan, Y. Inkong, R. Yimnirun. Estimation of energy density of PMN-PT ceramics utilizing mechanical stress. Integr. Ferroelectr., 195, 39(2019).
[26] V. V. Shvartsman, D. C. Lupascu. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc., 95, 1(2012).
[27] A. A. Bokov, H. Luo, Z. G. Ye. Polar nanodomains and relaxor behaviour in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals with x = 0.3–0.5. Mater. Sci. Eng. B., 120, 206(2005).
[28] A. A. Bokov, Z. G. Ye. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci., 41, 31(2006).
[29] L. Jin, F. Li, S. J. Zhang. Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J. Am. Ceram. Soc., 97, 1(2014).
[30] W. H. He, Q. Li, Q. F. Yan, N. N. Luo, Y. L. Zhang, X. C. Chu, D. H. Shen. Temperature-dependent phase transition in orthorhombic [011]c Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 single crystal. Crystals, 4, 262(2014).
[31] G. Du, R. H. Liang, L. Wang, K. Li, W. B. Zhang, G. S. Wang, X. L. Dong. Linear temperature scaling of ferroelectric hysteresis in Mn-doped Pb(Mn1/3Sb2/3)O3-Pb(Zr,Ti)O3 ceramic with internal bias field. Appl. Phys. Lett., 102, 142903(2013).