• Photonics Research
  • Vol. 8, Issue 8, A16 (2020)
Natalie A. Mica1, Rui Bian2, Pavlos Manousiadis1, Lethy K. Jagadamma1, Iman Tavakkolnia2, Harald Haas2、3、*, Graham A. Turnbull1、4、*, and Ifor D. W. Samuel1、5、*
Author Affiliations
  • 1Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, St Andrews, Fife KY16 9SS, UK
  • 2LiFi Research and Development Centre, Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh EH9 3FD, UK
  • 3e-mail: H.Haas@ed.ac.uk
  • 4e-mail: gat@st-andrews.ac.uk
  • 5e-mail: idws@st-andrews.ac.uk
  • show less
    DOI: 10.1364/PRJ.393647 Cite this Article Set citation alerts
    Natalie A. Mica, Rui Bian, Pavlos Manousiadis, Lethy K. Jagadamma, Iman Tavakkolnia, Harald Haas, Graham A. Turnbull, Ifor D. W. Samuel. Triple-cation perovskite solar cells for visible light communications[J]. Photonics Research, 2020, 8(8): A16 Copy Citation Text show less
    References

    [1] . Best research-cell efficiencies.

    [2] G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun., 8, 15684(2017).

    [3] C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, H. W. Lin. Perovskite photovoltaics for dim-light applications. Adv. Funct. Mater., 25, 7064-7070(2015).

    [4] L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, I. D. W. Samuel. Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers. Sol. Energy Mater. Sol. Cells, 201, 110071(2019).

    [5] M. F. Müller, M. Freunek, L. M. Reindl. Maximum efficiencies of indoor photovoltaic devices. IEEE J. Photovoltaics, 3, 59-64(2013).

    [6] L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun., 5, 5404(2014).

    [7] Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, P. Meredith. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater., 27, 2060-2064(2015).

    [8] S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, H. Haas. Organic solar cells as high-speed data detectors for visible light communication. Optica, 2, 607-610(2015).

    [9] S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, H. Haas. Towards energy neutral wireless communications: photovoltaic cells to connect remote areas. Energies, 12, 3772(2019).

    [10] J. Fakidis, S. Videv, H. Helmers, H. Haas. 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell. IEEE Photon. Technol. Lett., 30, 841-844(2018).

    [11] Z. Wang, D. Tsonev, S. Videv, H. Haas. Towards self-powered solar panel receiver for optical wireless communication. IEEE International Conference on Communications (ICC), 3348-3353(2014).

    [12] C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, F. Gao. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater., 30, 1803422(2018).

    [13] M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, F. Teng. High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films. Sci. Rep., 8, 1(2018).

    [14] G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, W. Mai. Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small, 15, 1902135(2019).

    [15] C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, W. Huang. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system. Small, 15, 1903599(2019).

    [16] E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, B. Romero. Visible light communication system using an organic emitter and a perovskite photodetector. Org. Electron., 73, 292-298(2019).

    [17] L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, A. Reale. Perovskite photo-detectors (PVSK-PDs) for visible light communication. Org. Electron., 69, 220-226(2019).

    [18] C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, B. S. Ooi. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl., 8, 94(2019).

    [19] Z. Wang, D. Tsonev, S. Videv, H. Haas. On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting. IEEE J. Sel. Areas Commun., 33, 1612-1623(2015).

    [20] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci., 9, 1989-1997(2016).

    [21] A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, A. Pivrikas. Quantum efficiency of organic solar cells: electro-optical cavity considerations. ACS Photon., 1, 173-181(2014).

    [22] H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, T. Mallick. Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems. Sustain. Energy Fuels, 4, 528-537(2020).

    [23] T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, L. J. A. Koster. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett., 2, 1214-1222(2017).

    [24] D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, Y. Galagan. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy, 67, 104186(2020).

    [25] J. W. Matiko, N. J. Grabham, S. P. Beeby, M. J. Tudor. Review of the application of energy harvesting in buildings. Meas. Sci. Technol., 25, 012002(2014).

    [26] X. Tang, X. Wang, R. Cattley, F. Gu, A. Ball. Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review. Sensors, 18, 4113(2018).

    [27] R. Bian, I. Tavakkolnia, H. Haas. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J. Lightwave Technol., 37, 2418-2424(2019).

    [28] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, M. D. Dawson. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res., 5, A35-A43(2017).

    [29] L. M. Zhang, F. R. Kschischang. Staircase codes with 6% to 33% overhead. J. Lightwave Technol., 32, 1999-2002(2014).

    [30] G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, A. B. Walker. Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?. Energy Environ. Sci., 9, 1476-1485(2016).

    [31] D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, K. R. Catchpole. The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. J. Appl. Phys., 124, 225702(2018).

    [32] H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, C. Zhang. Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials. ACS Omega, 2, 326-336(2017).

    [33] S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, J. P. Correa-Baena. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci., 11, 78-86(2018).

    [34] H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, Y. Yang. Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives. J. Mater. Chem. A, 3, 9108-9115(2015).

    CLP Journals

    [1] Qing Zhang, Carole Diederichs, Qihua Xiong. Golden hour for perovskite photonics[J]. Photonics Research, 2020, 8(12): PP1

    Natalie A. Mica, Rui Bian, Pavlos Manousiadis, Lethy K. Jagadamma, Iman Tavakkolnia, Harald Haas, Graham A. Turnbull, Ifor D. W. Samuel. Triple-cation perovskite solar cells for visible light communications[J]. Photonics Research, 2020, 8(8): A16
    Download Citation