• NUCLEAR TECHNIQUES
  • Vol. 45, Issue 11, 110001 (2022)
Yuxiang WANG1, Ge TANG1、*, Yao XIAO1, Xinyu ZHAO1, Peng FENG2, and Wei HU2
Author Affiliations
  • 1College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
  • 2College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.11889/j.0253-3219.2022.hjs.45.110001 Cite this Article
    Yuxiang WANG, Ge TANG, Yao XIAO, Xinyu ZHAO, Peng FENG, Wei HU. Research status and development trends of irradiation effects on memristor[J]. NUCLEAR TECHNIQUES, 2022, 45(11): 110001 Copy Citation Text show less
    References

    [1] Chua L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 18, 507-519(1971).

    [2] Strukov D B, Snider G S, Stewart D R et al. The missing memristor found[J]. Nature, 453, 80-83(2008).

    [3] Jang J T, Min J, Hwang Y et al. Digital and analog switching characteristics of InGaZnO memristor depending on top electrode material for neuromorphic system[J]. IEEE Access, 8, 192304-192311(2020).

    [4] Schmitt R. Defect and structure design of oxides for valence-change resistive switching devices[D](2017).

    [5] Xu R J, Jang H, Lee M H et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV[J]. Nano Letters, 19, 2411-2417(2019).

    [6] Xu N, Park T, Yoon K J et al. In-memory stateful logic computing using memristors: gate, calculation, and application[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 15, 2100208(2021).

    [7] Luo L, Dong Z K, Duan S K et al. Memristor‐based stateful logic gates for multi‐functional logic circuit[J]. IET Circuits, Devices & Systems, 14, 811-818(2020).

    [8] Yao P, Wu H Q, Gao B et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 577, 641-646(2020).

    [9] Lin P, Li C, Wang Z R et al. Three-dimensional memristor circuits as complex neural networks[J]. Nature Electronics, 3, 225-232(2020).

    [10] Li C, Graves C E, Sheng X et al. Analog content-addressable memories with memristors[J]. Nature Communications, 11, 1638(2020).

    [11] Wan W E, Kubendran R, Schaefer C et al. A compute-in-memory chip based on resistive random-access memory[J]. Nature, 608, 504-512(2022).

    [12] Zaffora A, di Franco F, Macaluso R et al[M]. TiO2 in memristors and resistive random access memory devices, 507-526(2021).

    [13] Rajasekaran S, Simanjuntak F M, Panda D et al. Fast, highly flexible, and transparent TaO x -based environmentally robust memristors for wearable and aerospace applications[J]. ACS Applied Electronic Materials, 2, 3131-3140(2020).

    [14] Liu C, Wang L G, Cao Y Q et al. Synaptic functions and a memristive mechanism on Pt/AlOx/HfOx/TiN bilayer-structure memristors[J]. Journal of Physics D: Applied Physics, 53, 035302(2020).

    [15] Liu Y H, Wang Y S, Wang C X et al. Improvement on synaptic properties of WO x -based memristor by doping Ti into WO x[J]. Journal of Physics D: Applied Physics, 54, 455107(2021).

    [16] Wu L, Liu H X, Li J B et al. A multi-level memristor based on Al-doped HfO2 thin film[J]. Nanoscale Research Letters, 14, 177(2019).

    [17] Tang H, Tang X G, Jiang Y P et al. Bipolar resistive switching characteristics of amorphous SrTiO3 thin films prepared by the Sol-gel process[J]. Journal of Asian Ceramic Societies, 7, 298-305(2019).

    [18] Zhang Q Q, Li X G, Zhu J. Direct observation of interface-dependent multidomain state in the BaTiO3 tunnel barrier of a multiferroic tunnel junction memristor[J]. ACS Applied Materials & Interfaces, 13, 43641-43647(2021).

    [19] Mou N I, Tabib-Azar M. Photoreduction of Ag+ in Ag/Ag2S/Au memristor[J]. Applied Surface Science, 340, 138-142(2015).

    [20] Chen L, Xia Y D, Liang X F et al. Nonvolatile memory devices with Cu2S and Cu-Pc bilayered films[J]. Applied Physics Letters, 91, 073511(2007).

    [21] Zhai F X, Hao Y Q, Liu N N et al. Bipolar resistive switching of Ge2Sb2Te5 material[C], 11209, 777-781(2019).

    [22] Zhang J J, Sun H J, Li Y et al. AgInSbTe memristor with gradual resistance tuning[J]. Applied Physics Letters, 102, 183513(2013).

    [23] Wang M, Cai S H, Pan C et al. Robust memristors based on layered two-dimensional materials[J]. Nature Electronics, 1, 130-136(2018).

    [24] Bhansali U S, Khan M A, Cha D et al. Metal-free, single-polymer device exhibits resistive memory effect[J]. ACS Nano, 7, 10518-10524(2013).

    [25] Zhou Y, Han S T, Yan Y et al. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends[J]. Scientific Reports, 5, 10683(2015).

    [26] Wang H, Meng F B, Zhu B W et al. Resistive switching memory devices based on proteins[J]. Advanced Materials, 27, 7670-7676(2015).

    [27] Park Y, Lee J S. Flexible multistate data storage devices fabricated using natural lignin at room temperature[J]. ACS Applied Materials & Interfaces, 9, 6207-6212(2017).

    [28] Sawa A. Resistive switching in transition metal oxides[J]. Materials Today, 11, 28-36(2008).

    [29] Seo S, Lee M J, Seo D H et al. Reproducible resistance switching in polycrystalline NiO films[J]. Applied Physics Letters, 85, 5655-5657(2004).

    [30] Rossel C, Meijer G I, Brémaud D et al. Electrical current distribution across a metal-insulator-metal structure during bistable switching[J]. Journal of Applied Physics, 90, 2892-2898(2001).

    [31] Rodrı́guez Contreras J, Kohlstedt H, Poppe U et al. Resistive switching in metal-ferroelectric-metal junctions[J]. Applied Physics Letters, 83, 4595-4597(2003).

    [32] Beck A, Bednorz J G, Gerber C et al. Reproducible switching effect in thin oxide films for memory applications[J]. Applied Physics Letters, 77, 139-141(2000).

    [33] Tsai S C, Lo H Y, Huang C Y et al. Structural analysis and performance in a dual-mechanism conductive filament memristor[J]. Advanced Electronic Materials, 7, 2170047(2021).

    [34] Sim H, Choi H, Lee D et al. Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application[C], 758-761(2005).

    [35] Wang Y, Lv H B, Wang W et al. Highly stable radiation-hardened resistive-switching memory[J]. IEEE Electron Device Letters, 31, 1470-1472(2010).

    [36] Prinzie J, Simanjuntak F M, Leroux P et al. Low-power electronic technologies for harsh radiation environments[J]. Nature Electronics, 4, 243-253(2021).

    [37] Tong W M, Yang J J, Kuekes P J et al. Radiation hardness of TiO2 memristive junctions[J]. IEEE Transactions on Nuclear Science, 57, 1640-1643(2010).

    [38] GU Ye. Research on memristor device characteristics and circuit applications[D](2015).

    [39] Hughart D R, Dalton S M, Mickel P R et al. Total ionizing dose and displacement damage effects on TaO x memristive memories[C], 1-10(2013).

    [40] Barnaby H J, Malley S, Land M et al. Impact of alpha particles on the electrical characteristics of TiO2 memristors[J]. IEEE Transactions on Nuclear Science, 58, 2838-2844(2011).

    [41] Wang J J, Ren D L, Zhang Z C et al. A radiation-hardening Ta/Ta2O5-x /Al2O3/InGaZnO4 memristor for harsh electronics[J]. Applied Physics Letters, 113, 122907(2018).

    [42] Rafik H, Izerrouken M. Radiation damage induced by reactor neutrons in nano-anatase TiO2 thin film[J]. Radiation Physics and Chemistry, 177, 109114(2020).

    [43] Ziegler J F, Ziegler M D, Biersack J P. SRIM - the stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 1818-1823(2010).

    [44] LIU Haijun, TIAN Xiaobo, LI Qingjiang et al. Research on radiation damage in titanium oxide memristors by Monte Carlo method[J]. Acta Physica Sinica, 64, 078401(2015).

    [45] Pozzi S A, Padovani E, Marseguerra M. MCNP-PoliMi: a Monte-Carlo code for correlation measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 513, 550-558(2003).

    [46] LI Gang, ZHANG Baoyin, DENG Li et al. Development of Monte Carlo particle transport code JMCT[J]. High Power Laser and Particle Beams, 25, 158-162(2013).

    [47] Marinella M, Dodd P E, Shaneyfelt M R et al. Effect of X-ray and proton radiation on the electrical characteristics of TaO x memristors[R](2012).

    [48] Marinella M J, Dalton S M, Mickel P R et al. Initial assessment of the effects of radiation on the electrical characteristics of TaO x memristive memories[J]. IEEE Transactions on Nuclear Science, 59, 2987-2994(2012).

    [49] Hughart D R, Lohn A J, Mickel P R et al. A comparison of the radiation response of TaO x and TiO2 memristors[J]. IEEE Transactions on Nuclear Science, 60, 4512-4519(2013).

    [50] McLain M L, Hjalmarson H P, Sheridan T J et al. The susceptibility of TaO x -based memristors to high dose rate ionizing radiation and total ionizing dose[J]. IEEE Transactions on Nuclear Science, 61, 2997-3004(2014).

    [51] McLain M, Hughart D, Hanson D et al. Effects of ionizing radiation on TaO x -based memristive devices[C], 1-9(2014).

    [52] Chi Y Q, Liu R R, Tang Z S et al. Total ionizing dose effect on low on/off switching ratio TiO2 memristive memories[J]. IEEE Transactions on Nuclear Science, 61, 1889-1893(2014).

    [53] McLain M L, McDonald J K, Sheridan T J et al. The susceptibility of TaO x -based memristive devices to continuous and pulsed ionizing radiation[R](2014).

    [54] McLain M L, Marinella M J. Overview of the radiation response of anion-based memristive devices[C], 1-11(2015).

    [55] Hughart D R, Lohn A J, Mickel P R et al. Radiation-induced resistance changes in TaO x and TiO2 memristors[C], 1-11(2014).

    [56] Li Y S, Loh L, Li S F et al. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries[J]. Nature Electronics, 4, 348-356(2021).

    [57] Li S F, Li B C, Feng X W et al. Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing[J]. Npj 2D Materials and Applications, 5, 1(2021).

    [58] Molinari A, Witte R, Neelisetty K K et al. Configurable resistive response in BaTiO3 ferroelectric memristors via electron beam radiation[J]. Advanced Materials, 32, 1907541(2020).

    [59] DeIonno E, Looper M D, Osborn J V et al. Radiation effects studies on thin film TiO2 memristor devices[C], 1-8(2013).

    [60] Rubi D, Kalstein A, Román W S et al. Manganite based memristors: influence of the electroforming polarity on the electrical behavior and radiation hardness[J]. Thin Solid Films, 583, 76-80(2015).

    [61] Vujisic M, Stankovic K, Marjanovic N et al. Simulated effects of proton and ion beam irradiation on titanium dioxide memristors[J]. IEEE Transactions on Nuclear Science, 57, 1798-1804(2010).

    [62] Vujisic M, Stankovic K, Osmokrovic P. Effects of proton and ion beam irradiation on titanium dioxide memristors[C], 65-69(2009).

    [63] Knežević I, Obrenović M, Rajović Z et al. Simulation of ion beam irradiation effects in perovskite oxide memristors[J]. Advanced Materials Research, 906, 89-95(2014).

    [64] XUE Qiang. Resistive switching properties of ⅥB metal oxides and irradiation influence[D](2019).

    [65] Huang S T, Luo W B, Pan X Q et al. Resistive switching effects of crystal‐ion‐slicing fabricated LiNbO3 single crystalline thin film on flexible polyimide substrate[J]. Advanced Electronic Materials, 7, 2170036(2021).

    [66] Xie Q, Pan X Q, Luo W B et al. Effects of Ar+ irradiation on the performance of memristor based on single-crystalline LiNbO3 thin film[J]. Journal of Materials Science: Materials in Electronics, 32, 20817-20826(2021).

    [67] Wang J J, Pan X Q, Luo W B et al. Voltage-programmable negative differential resistance in memristor of single-crystalline lithium niobate thin film[J]. Applied Physics Letters, 120, 032901(2022).

    [68] Wang J J, Pan X Q, Wang Q et al. Reliable resistive switching and synaptic plasticity in Ar+-irradiated single-crystalline LiNbO3 memristor[J]. Applied Surface Science, 596, 153653(2022).

    [69] Pan X Q, Shuai Y, Wu C G et al. Ar+ ions irradiation induced memristive behavior and neuromorphic computing in monolithic LiNbO3 thin films[J]. Applied Surface Science, 484, 751-758(2019).

    [70] Ku B, Abbas Y, Kim S et al. Improved resistive switching and synaptic characteristics using Ar plasma irradiation on the Ti/HfO2 interface[J]. Journal of Alloys and Compounds, 797, 277-283(2019).

    [71] DeIonno E, Looper M D, Osborn J V et al. Displacement damage in TiO2 memristor devices[J]. IEEE Transactions on Nuclear Science, 60, 1379-1383(2013).

    [72] Belov A, Mikhaylov A, Korolev D et al. Medium-energy ion-beam simulation of the effect of ionizing radiation and displacement damage on SiO2-based memristive nanostructures[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 379, 13-17(2016).

    [73] Taggart J L, Fang R C, Gonzalez-Velo Y et al. Resistance state locking in CBRAM cells due to displacement damage effects[J]. IEEE Transactions on Nuclear Science, 64, 2300-2306(2017).

    [74] Ye T, Li X H, Wang Z Q et al. Neutron irradiation-induced effects on the reliability performance of electrochemical metallization memory devices[J]. Journal of Semiconductors, 42, 14103(2021).

    [75] Vujović M, Milutinović S, Vujisić M. Simulation-based comparison of energy deposition pathways in neutron-irradiated TiO2 memristors[C](2017).

    [76] Ismail M, Hashmi A, Rana A M et al. Eradicating negative-Set behavior of TiO2-based devices by inserting an oxygen vacancy rich zirconium oxide layer for data storage applications[J]. Nanotechnology, 31, 325201(2020).

    [77] PEI Yifei. Performance and physical mechanism of quantum dot doped Ga2O3 memristor[D](2020).

    [78] Wang X F, Tian H, Zhao H M et al. Interface engineering with MoS2-Pd nanoparticles hybrid structure for a low voltage resistive switching memory[J]. Small, 14, 1702525(2018).

    Yuxiang WANG, Ge TANG, Yao XIAO, Xinyu ZHAO, Peng FENG, Wei HU. Research status and development trends of irradiation effects on memristor[J]. NUCLEAR TECHNIQUES, 2022, 45(11): 110001
    Download Citation