• Laser & Optoelectronics Progress
  • Vol. 61, Issue 3, 0304001 (2024)
Fangliang Gao1, Kun Chen1, Qing Liu1, Xingfu Wang1, Jirui Yang1, Mingjun Xu1, Yuhao He1, Yuhao Shi1, Tengwen Xu1, Zhichao Yang2、*, and Shuti Li1、**
Author Affiliations
  • 1School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, Guangdong , China
  • 2Dongguan South Semiconductor Technology Co., Ltd., Dongguan 523781, Guangdong , China
  • show less
    DOI: 10.3788/LOP232089 Cite this Article Set citation alerts
    Fangliang Gao, Kun Chen, Qing Liu, Xingfu Wang, Jirui Yang, Mingjun Xu, Yuhao He, Yuhao Shi, Tengwen Xu, Zhichao Yang, Shuti Li. Study on the Performance of Graphene/GaN Ultraviolet Photodetectors Regulated Through Interface Engineering (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0304001 Copy Citation Text show less
    References

    [1] Pearton S J, Yang J C, Cary P H IV et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 5, 011301(2018).

    [2] Zhang Z X, Zeng L H, Tong X W et al. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions[J]. The Journal of Physical Chemistry Letters, 9, 1185-1194(2018).

    [3] Tsai D S, Liu K K, Lien D H et al. Few-layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 7, 3905-3911(2013).

    [4] David J. The staircase photodiode[J]. Nature Photonics, 10, 364-366(2016).

    [5] Li H N, Li Y, Aljarb A et al. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability[J]. Chemical Reviews, 118, 6134-6150(2018).

    [6] Wu D, Guo J W, Wang C Q et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation[J]. ACS Nano, 15, 10119-10129(2021).

    [7] Yoo T J, Kim S Y, Kwon M G et al. A facile method for improving detectivity of graphene/p-type silicon heterojunction photodetector[J]. Laser & Photonics Reviews, 15, 2000557(2021).

    [8] Ke Y X, Cen Y Q, Qi D Y et al. Two‑dimensional materials photodetectors for optical communications[J]. Chinese Journal of Lasers, 50, 0113008(2023).

    [9] Novoselov K S, Fal’ko V I, Colombo L et al. A roadmap for graphene[J]. Nature, 490, 192-200(2012).

    [10] Pospischil A, Humer M, Furchi M M et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 7, 892-896(2013).

    [11] Koppens F H L, Mueller T, Avouris P et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 9, 780-793(2014).

    [12] Wang X M, Cheng Z Z, Xu K et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 7, 888-891(2013).

    [13] Li J L, Sun K X. Light absorption characteristics of a graphene photodetector based on nano-metal modification[J]. Laser & Optoelectronics Progress, 59, 2124003(2022).

    [14] Ponomarenko L A, Schedin F, Katsnelson M I et al. Chaotic Dirac billiard in graphene quantum dots[J]. Science, 320, 356-358(2008).

    [15] Wu F, Xia H, Sun H D et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity[J]. Advanced Functional Materials, 29, 1900314(2019).

    [16] Wan X, Xu Y, Guo H W et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?[J]. NPJ 2D Materials and Applications, 1, 4(2017).

    [17] Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 16, 170-181(2017).

    [18] Chen W J, Liang R R, Zhang S Q et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure[J]. Nano Research, 13, 127-132(2020).

    [19] Zhang D, Lin W M, Liu S X et al. Ultra-robust deep-UV photovoltaic detector based on graphene/(AlGa)2O3/GaN with high-performance in temperature fluctuations[J]. ACS Applied Materials & Interfaces, 11, 48071-48078(2019).

    [20] He T, Zhang X D, Ding X Y et al. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity[J]. Advanced Optical Materials, 7, 1801563(2019).

    [21] Zhou X Y, Xiang W B, Chen Y J et al. Application of ZnCdS: Mn/ZnS quantum dots in silicon-based ultraviolet detectors[J]. Laser & Optoelectronics Progress, 59, 1704001(2022).

    [22] Wang Y J, Lu K Y, Han L et al. In situ passivation for efficient PbS quantum dot solar cells by precursor engineering[J]. Advanced Materials, 30, 1704871(2018).

    [23] Liu Q, Yang Y Q, Wang X F et al. High-performance UV-visible photodetectors based on CH3NH3PbI3-xClx/GaN microwire array heterostructures[J]. Journal of Alloys and Compounds, 864, 158710(2021).

    [24] Liu Q, Shi J, Xu Z Z et al. InGaN nanorods decorated with Au nanoparticles for enhanced water splitting based on surface plasmon resonance effects[J]. Nanomaterials, 10, 912(2020).

    [25] Peter L M, Walker A B, Bein T et al. Interpretation of photocurrent transients at semiconductor electrodes: effects of band-edge unpinning[J]. Journal of Electroanalytical Chemistry, 872, 114234(2020).

    [26] Sun Y M, Song W D, Gao F L et al. In situ conformal coating of polyaniline on GaN microwires for ultrafast, self-driven heterojunction ultraviolet photodetectors[J]. ACS Applied Materials & Interfaces, 12, 13473-13480(2020).

    [27] Lu X W, Sun L, Jiang P et al. Progress of photodetectors based on the photothermoelectric effect[J]. Advanced Materials, 31, 1902044(2019).

    [28] Chen X Q, Shehzad K, Gao L et al. Graphene hybrid structures for integrated and flexible optoelectronics[J]. Advanced Materials, 32, 1902039(2020).

    [29] Shen X, Wang D, Ning J et al. MMA-enabled ultraclean graphene transfer for fast-response graphene/GaN ultraviolet photodetectors[J]. Carbon, 169, 92-98(2020).

    [30] Tielrooij K J, Song J C W, Jensen S A et al. Photoexcitation cascade and multiple hot-carrier generation in graphene[J]. Nature Physics, 9, 248-252(2013).

    [31] Ma Q, Andersen T I, Nair N L et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure[J]. Nature Physics, 12, 455-459(2016).

    [32] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 10, 25-34(2015).

    [33] Liu Q, Song W D, Wang X F et al. Fowler-Nordheim tunneling mechanism for performance improvement in graphene 2D/GaN 3D heterojunction ultraviolet photodetector[J]. Carbon, 201, 1061-1067(2023).

    [34] Yin J, Liu L, Zang Y S et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors[J]. Light: Science & Applications, 10, 113(2021).

    [35] Park J P, Heo J H, Im S H et al. Highly efficient solid-state mesoscopic PbS with embedded CuS quantum dot-sensitized solar cells[J]. Journal of Materials Chemistry A, 4, 785-790(2016).

    Fangliang Gao, Kun Chen, Qing Liu, Xingfu Wang, Jirui Yang, Mingjun Xu, Yuhao He, Yuhao Shi, Tengwen Xu, Zhichao Yang, Shuti Li. Study on the Performance of Graphene/GaN Ultraviolet Photodetectors Regulated Through Interface Engineering (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0304001
    Download Citation