• Opto-Electronic Engineering
  • Vol. 44, Issue 12, 1160 (2017)
Huan Yang1、2, Yu Cao2, Fengping Li1、*, and Wei Xue1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.12.003 Cite this Article
    Huan Yang, Yu Cao, Fengping Li, Wei Xue. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electronic Engineering, 2017, 44(12): 1160 Copy Citation Text show less
    References

    [1] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1–8.

    [2] Zhou Wenmu. Research on marine antifouling performances of biologic surface[D]. Changsha: National University of De-fense Technology, 2010.

    [3] Koch K, Bhushan B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces[J]. Soft Matter, 2008, 4(10): 1943–1963.

    [4] Duparré A, Flemming M, Steinert J, et al. Optical coatings with enhanced roughness for ultrahydrophobic, low-scatter ap-plications[J]. Applied Optics, 2002, 41(16): 3294–3298.

    [5] Zhang H, Lamb R, Lewis J. Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour[J]. Science and Technology of Advanced Materials, 2005, 6(3-4): 236–239.

    [6] Li Shenghai, Xie Haibo, Zhang Suobo, et al. Facile trans-formation of hydrophilic cellulose into superhydrophobic cel-lulose[J]. Chemical Communications, 2007, 46: 4857–4859.

    [7] Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces[J]. Langmuir, 1996, 12(9): 2125–2127.

    [8] Shibuichi S, Onda N, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure[J]. Journal of Physical Chemistry, 1996, 100(50): 19512–19517.

    [9] Chen Wei, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples[J]. Langmuir, 1999, 15(10): 3395–3399.

    [10] Oner D, McCarthy T J. Ultrahydrophobic surfaces. effects of topography length scales on wettability[J]. Langmuir, 2000, 16(20): 7777–7782.

    [11] Matsumoto Y, Ishida M. The property of plasma-polymerized fluorocarbon film in relation to CH4/C4F8 ratio and substrate temperature[J]. Sensors and Actuators A: Physical, 2000, 83(1–3): 179–185.

    [12] Wu Y, Sugimura H, Inoue Y, et al. Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD[J]. Chemical Vapor Deposition, 2002, 8(2): 47–50.

    [13] Takeda K, Sasaki M, Kieda N, et al. Preparation of transparent super-hydrophobic polymer film with brightness enhancement property[J]. Journal of Materials Science Letters, 2001, 20(23): 2131–2133.

    [14] Shibuichi S, Yamamoto T, Onda T, et al. Super water- and oil-repellent surfaces resulting from fractal structure[J]. Journal of Colloid and Interface Science, 1998, 208(1): 287–294.

    [15] Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhy-drophobic surfaces[J]. Langmuir, 2000, 16(13): 5754–5760.

    [16] Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic films with visible light transmission[J]. Thin Solid Films, 2000, 376(1–2): 140–143.

    [17] Tadanaga K, Morinaga J, Minami T. Formation of superhy-drophobic-superhydrophilic pattern on flowerlike alumina thin film by the sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2000, 19(1–3): 211–214.

    [18] Li Shuhong, Li Huanjun, Wang Xianbao, et al. Su-per-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes[J]. Journal of Physical Chemistry B, 2002, 106(36): 9274–9276.

    [19] Veeramasuneni S, Drelich J, Miller J D, et al. Hydrophobicity of ion-plated PTFE coatings[J]. Progress in Organic Coatings, 1997, 31(3): 265–270.

    [20] Miller J D, Veeramasuneni S, Drelich J, et al. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films[J]. Polymer Engineering & Science, 1996, 36(14): 1849–1855.

    [21] Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled mono-layers[J]. Science, 2000, 290(5499): 2130–2133.

    [22] Nakajima A, Saiki C, Hashimoto K, et al. Processing of roughened silica film by coagulated colloidal silica for su-per-hydrophobic coating[J]. Journal of Materials Science Letters, 2001, 20(21): 1975–1977.

    [23] Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science, 2003, 299(5611): 1377–1380.

    [24] Qian Baitai. Study on fabrication of superhydrophobic sur-faces on metallic substrates[D]. Dalian: Dalian University of Technology, 2006.

    [25] Jiang Lei. Nanostructured materials with superhydrophobic surface——from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 2003, 23(12): 1258–1264.

    [26] Yan Xiaoci, Luo Mingdao. Surface Chemistry[M]. Beijing: Chemical Industry Press, 2005.

    [27] Teng Xinrong. Surface physical chemistry[M]. Beijing: Chemical Technology Press, 2009.

    [28] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65–87.

    [29] Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention [J]. Journal of Colloid and Interface Science, 1962, 17: 309– 324.

    [30] Wenzel P N. Resistance of solid surfaces to wetting by wa-ter[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988–994.

    [31] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546–551.

    [32] Quéré D, Lafuma A, Bico J. Slippy and sticky microtextured solids[J]. Nanotechnology, 2003, 14(10): 1109–1112.

    [33] Peters A M, Pirat C, Sbragaglia M, et al. Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity[J]. The European Physical Journal E, 2009, 29(4): 391–397.

    [34] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on CF3 alignment[J]. Langmuir, 1999, 15(13): 4321–4323.

    [35] Blossey R. Self-cleaning surfaces-virtual realities[J]. Nature Materials, 2003, 2(5): 301–306.

    [36] He Haidong, Qu Ningsong, Zeng Yongbin. Lotus-leaf-like microstructures on tungsten surface induced by one-step nanosecond laser irradiation[J]. Surface and Coatings Technology, 2016, 307: 898–907.

    [37] Emelyanenko A M, Shagieva F M, Domantovsky A G, et al. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion[J]. Applied Surface Sci-ence, 2015, 332: 513–517.

    [38] Tang T, Shim V, Pan Z Y, et al. Laser ablation of metal sub-strates for super-hydrophobic effect[J]. Journal of Laser Mi-cro/Nanoengineering, 2011, 6(1): 6–9.

    [39] Chun D M, Ngo C V, Lee K M. Fast fabrication of superhy-drophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J]. CIRP Annals, 2016, 65(1): 519– 522.

    [40] Jagdheesh R, Pathiraj B, Karatay E, et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 2011, 27(13): 8464–8469.

    [41] Long Jiangyou, Zhong Minlin, Zhang Hongjun, et al. Su-perhydrophilicity to superhydrophobicity transition of pico-second laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 2015, 441: 1–9.

    [42] Lin Cheng. Large-area Metal lotus-like structures fabricated by picosecond laser for superhydrophobic surface replica-tion[D]. Beijing: Tsinghua University, 2014.

    [43] Jagdheesh R. Fabrication of a superhydrophobic Al2O3sur-face using picosecond laser pulses[J]. Langmuir, 2014, 30(40): 12067–12073.

    [44] Baldacchini T, Carey J E, Zhou Ming, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917–4919.

    [45] Yong Jiale, Yang Qing, Chen Feng, et al. Stable superhy-drophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 2013, 111(1): 243–249.

    [46] Zhang Dongshi, Chen Feng, Fang Guoping, et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Mi-croengineering, 2010, 20(7): 075029.

    [47] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049–4054.

    [48] Yoon T O, Shin H J, Jeoung S C, et al. Formation of super-hydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification[J]. Optics Express, 2008, 16(17): 12715– 12725.

    [49] Moradi S, Kamal S, Englezos P, et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41): 415302.

    Huan Yang, Yu Cao, Fengping Li, Wei Xue. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electronic Engineering, 2017, 44(12): 1160
    Download Citation