• Advanced Photonics
  • Vol. 2, Issue 3, 036003 (2020)
Ilaria Gianani1、2, Alessia Suprano1, Taira Giordani1, Nicolò Spagnolo1, Fabio Sciarrino1、3、*, Dimitris Gorpas4、5, Vasilis Ntziachristos4、5, Katja Pinker6, Netanel Biton7, Judy Kupferman7, and Shlomi Arnon7
Author Affiliations
  • 1Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy
  • 2Università degli Studi Roma Tre, Dipartimento di Scienze, Rome, Italy
  • 3Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Roma, Italy
  • 4Technische Universität München, Biological Imaging and Center for Translational Cancer Research, Munich, Germany
  • 5Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
  • 6Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Molecular and Gender Imaging Service, Vienna, Austria
  • 7Ben-Gurion University of the Negev, Department of Electrical and Computer Engineering, Beer Sheva, Israel
  • show less
    DOI: 10.1117/1.AP.2.3.036003 Cite this Article Set citation alerts
    Ilaria Gianani, Alessia Suprano, Taira Giordani, Nicolò Spagnolo, Fabio Sciarrino, Dimitris Gorpas, Vasilis Ntziachristos, Katja Pinker, Netanel Biton, Judy Kupferman, Shlomi Arnon. Transmission of vector vortex beams in dispersive media[J]. Advanced Photonics, 2020, 2(3): 036003 Copy Citation Text show less
    References

    [1] L. Marrucci et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt., 13, 064001(2011).

    [2] M. Erhard et al. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [3] F. Cardano et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun., 7, 11439(2016).

    [4] F. Cardano et al. Detection of ZAK phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun., 8, 15516(2017).

    [5] L. Innocenti et al. Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A, 96, 062326(2017).

    [6] T. Giordani et al. Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett., 122, 020503(2019).

    [7] D. Cozzolino et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics, 1, 046005(2019).

    [8] A. Sit et al. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [9] G. Vallone et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 113, 060503(2014).

    [10] D. Cozzolino et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl., 11, 064058(2019).

    [11] J. Kupferman, S. Arnon. Decision algorithm for data center vortex beam receiver. J. Opt., 19, 125702(2017).

    [12] J. Kupferman, S. Arnon. Direct detection receiver for vortex beam. J. Opt. Soc. Am. A, 35, 1543-1548(2018).

    [13] J. Kupferman, S. Arnon. Decoding algorithm for vortex communications receiver. J. Opt., 20, 015702(2017).

    [14] J. Kupferman, S. Arnon. OWC with vortex beams in data center networks. Proc. SPIE, 10437, 1043705(2017).

    [15] L. Shi, A. Rodríguez-Contreras, R. R. Alfano. Gaussian beam in two-photon fluorescence imaging of rat brain microvessel. J. Biomed. Opt., 19, 126006(2014).

    [16] L. Shi et al. Propagation of Gaussian and Laguerre–Gaussian vortex beams through mouse brain tissue. J. Biophotonics, 10, 1756-1760(2017).

    [17] Y. Zhou et al. Efficient two-photon excitation by photonic dimers. Opt. Lett., 44, 475-478(2019).

    [18] B. Cochenour et al. Propagation of modulated optical beams carrying orbital angular momentum in turbid water. Appl. Opt., 55, C34-C38(2016).

    [19] W. B. Wang et al. Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media. Opt. Lett., 41, 2069-2072(2016).

    [20] Z. Chen, Y. Zhou, J.-T. Shen. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Opt. Lett., 41, 3313-3316(2016).

    [21] L. Gong et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [22] C. Gopaul, R. Andrews. The effect of atmospheric turbulence on entangled orbital angular momentum states. New J. Phys., 9, 94(2007).

    [23] M. Krenn et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [24] M. Krenn et al. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A., 113, 13648-13653(2016).

    [25] F. Bouchard et al. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express, 26, 22563-22573(2018).

    [26] F. Hufnagel et al. Characterization of an underwater channel for quantum communications in the Ottawa river. Opt. Express, 27, 26346-26354(2019).

    [27] H. Rubinsztein-Dunlop et al. Roadmap on structured light. J. Opt., 19, 013001(2017).

    [28] Y. Yuan et al. The orbital angular momentum spreading for cylindrical vector beams in turbulent atmosphere. IEEE Photonics J., 9, 6100610(2017).

    [29] W. Cheng, J. W. Haus, Q. Zhan. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express, 17, 17829-17836(2009).

    [30] M. Cheng et al. Enhanced vortex beams resistance to turbulence with polarization modulation. J. Quant. Spectrosc. Radiat. Transfer, 227, 219-225(2019).

    [31] Z. Chen, Y. Zhou, J.-T. Shen. Exact dissipation model for arbitrary photonic Fock state transport in waveguide QED systems. Opt. Lett., 42, 887-890(2017).

    [32] Z. Chen, Y. Zhou, J.-T. Shen. Entanglement-preserving approach for reservoir-induced photonic dissipation in waveguide QED systems. Phys. Rev. A, 98, 053830(2018).

    [33] B. Sick, B. Hecht, L. Novotny. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett., 85, 4482-4485(2000).

    [34] F. Lu, W. Zheng, Z. Huang. Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light. Opt. Lett., 34, 1870-1872(2009).

    [35] J. Li, M. Zhang, D. Wang. Adaptive demodulator using machine learning for orbital angular momentum shift keying. IEEE Photonics Technol. Lett., 29, 1455-1458(2017).

    [36] J. Ng, Z. Lin, C. T. Chan. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett., 104, 103601(2010).

    [37] A. V. Nesterov, V. G. Niziev. Laser beams with axially symmetric polarization. J. Phys. D Appl. Phys., 33, 1817-1822(2000).

    [38] G. Milione et al. 4×20  gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett., 40, 1980-1983(2015). https://doi.org/10.1364/OL.40.001980

    [39] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [40] V. D’Ambrosio et al. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun., 3, 961(2012).

    [41] R. Fickler et al. Quantum entanglement of high angular momenta. Science, 338, 640-643(2012).

    [42] A. Doronin et al. Propagation of cylindrical vector laser beams in turbid tissue-like scattering media. Photonics, 6, 56(2019).

    [43] S. Mamani et al. Transmission of classically entangled beams through mouse brain tissue. J. Biophotonics, 11, e201800096(2018).

    [44] K. S. Morgan et al. Free space propagation of concentric vortices through underwater turbid environments. J. Opt., 18, 104004(2016).

    [45] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [46] M. Padgett, J. Courtial, L. Allen. Light’s orbital angular momentum. Phys. Today, 57, 35(2004).

    [47] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [48] F. Cardano et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt., 51, C1-C6(2012).

    [49] B. Ndagano et al. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol., 36, 292-301(2018).

    [50] Scattering length calculator for Mie spheres.

    CLP Journals

    [1] Jian Chen, Chenhao Wan, Qiwen Zhan. Engineering photonic angular momentum with structured light: a review[J]. Advanced Photonics, 2021, 3(6): 064001

    [2] Zhi-Xiang Li, Ya-Ping Ruan, Peng Chen, Jie Tang, Wei Hu, Ke-Yu Xia, Yan-Qing Lu. Liquid crystal devices for vector vortex beams manipulation and quantum information applications [Invited][J]. Chinese Optics Letters, 2021, 19(11): 112601

    [3] Xutong Wang, Sheng Yu, Shengshuai Liu, Kai Zhang, Yanbo Lou, Wei Wang, Jietai Jing. Deterministic generation of large-scale hyperentanglement in three degrees of freedom[J]. Advanced Photonics Nexus, 2022, 1(1): 016002

    Ilaria Gianani, Alessia Suprano, Taira Giordani, Nicolò Spagnolo, Fabio Sciarrino, Dimitris Gorpas, Vasilis Ntziachristos, Katja Pinker, Netanel Biton, Judy Kupferman, Shlomi Arnon. Transmission of vector vortex beams in dispersive media[J]. Advanced Photonics, 2020, 2(3): 036003
    Download Citation