• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 2, 330 (2024)
LIU Wenjie1,2,3,*, YANG Qi1, LI Wenbo1, and LI Zixian1
Author Affiliations
  • 1School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 2Jiangsu Province Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
  • 3Jiangsu Province Engineering Research Center of Advanced Computing and Intelligent Services, Nanjing 210044, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.02.015 Cite this Article
    Wenjie LIU, Qi YANG, Wenbo LI, Zixian LI. A quantum private set computation protocol based on verifiability[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 330 Copy Citation Text show less
    References

    [1] Yao A C. Protocols for secure computations[C](1982).

    [2] Cheng N, Zhao Y L. Efficient approach regarding two-party privacy-preserving set union/intersection cardinality[J]. Journal of Cryptologic Reseatch, 8, 352-364(2021).

    [3] Gong L M, Wang D S, Liu M M et al. PSI Calculation Based on no matching errors[J]. Chinese Journal of Computers, 43, 1769-1790(2020).

    [4] Wang Q, Zhou F C, Xu J et al. Tag-based verifiable delegated set intersection over outsourced private datasets[J]. IEEE Transactions on Cloud Computing, 10, 1201-1214(2022).

    [5] Kamara S, Mohassel P, Raykova M et al. Scaling private set intersection to billion-element sets[C](2014).

    [6] Wang Q, Wei L F, Liu J H et al. Private set intersection protocols among multi-party with cloud server aided[J]. Computer Science, 48, 301-307(2021).

    [7] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[C](1994).

    [8] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 79, 325-328(1997).

    [9] Xu Y S, Liu W J, Yu W B. Quantum forgery attacks on COPA, AES-COPA and marble authenticated encryption algorithms[J]. Quantum Information Processing, 20, 1-21(2021).

    [10] Yu S, Bai M Q, Tang Q et al. Controlled quantum secure direct communication protocol based on three-particle GHZ-like state[J]. Chinese Journal of Quantum Electronics, 38, 57-65(2021).

    [11] Chang H, Wu Y T, Lin S. Quantum Secure multiparty summation based on Bell states[J]. Chinese Journal of Quantum Electronics, 38, 830-837(2021).

    [12] Shi R H, Mu Y, Zhong H et al. Quantum private set intersection cardinality and its application to anonymous authentication[J]. Information Sciences, 370, 147-158(2016).

    [13] Shi R H. Quantum private computation of cardinality of set intersection and union[J]. The European Physical Journal D, 72, 221(2018).

    [14] Shi R H. Efficient quantum protocol for private set intersection cardinality[J]. IEEE Access, 6, 73102-73109(2018).

    [15] Shi R H, Zhang M W. A feasible quantum protocol for private set intersection cardinality[J]. IEEE Access, 7, 72105-72112(2019).

    [16] Liu B, Zhang M W, Shi R H. Quantum secure multi-party private set intersection cardinality[J]. International Journal of Theoretical Physics, 59, 1992-2007(2020).

    [17] Zhang C, Long Y X, Sun Z W et al. Three-party quantum private computation of cardinalities of set intersection and union based on GHZ states[J]. Scientific Reports, 10, 22246(2020).

    [18] Wang Y L, Hu P C, Xu Q L. Quantum protocols for private set intersection cardinality and union cardinality based on entanglement swapping[J]. International Journal of Theoretical Physics, 60, 3514-3528(2021).

    [19] Shi R H, Mu Y, Zhong H et al. An efficient quantum scheme for private set intersection[J]. Quantum Information Processing, 15, 363-371(2016).

    [20] Cheng X G, Guo R, Chen Y H. Cryptanalysis and improvement of a quantum private set intersection protocol[J]. Quantum Information Processing, 16, 37(2017).

    [21] Maitra A. Quantum secure two-party computation for set intersection with rational players[J]. Quantum Information Processing, 17, 197(2018).

    [22] Debnath S K, Dey K, Kundu N et al. Feasible private set intersection in quantum domain[J]. Quantum Information Processing, 20, 41(2021).

    [23] Liu W, Yin H W. A novel quantum protocol for private set intersection[J]. International Journal of Theoretical Physics, 60, 2074-2083(2021).

    [24] Liu W J, Li W B, Wang H B. An improved quantum private set intersection protocol based on hadamard gates[J]. International Journal of Theoretical Physics, 61, 53(2022).

    [25] Shi R H, Mu Y, Zhong H et al. Two quantum protocols for oblivious set-member decision problem[J]. Scientific Reports, 5, 15914(2015).

    [26] Liu W, Zhang W. A quantum protocol for secure Manhattan distance computation[J]. IEEE Access, 8, 16456-16461(2020).

    [27] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 94, 230504(2005).

    [28] Ma X F, Qi B, Zhao Y et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 72, 012326(2005).

    [29] Gao F, Qin S J, Wen Q Y et al. A simple participant attack on the brádler-dušek protocol[J]. Quantum Information and Computation, 7, 329-334(2007).

    [30] Song T T, Wen Q Y, Gao F et al. Participant attack and improvement to multiparty quantum secret sharing based on GHZ states[J]. International Journal of Theoretical Physics, 52, 293-301(2013).

    [31] Wang R C, Feng Y. Secure multi-party quantum sorting protocol based on quantum summation[J]. Chinese Journal of Quantum Electronics, 38, 354-364(2021).

    Wenjie LIU, Qi YANG, Wenbo LI, Zixian LI. A quantum private set computation protocol based on verifiability[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 330
    Download Citation