• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 6, 668 (2018)
HUANG Wen-Chao1, WANG Xiao-Fang2、*, CHEN Xiao-Shuang2, XUE Yu-Xiong1, and YANG Sheng-Sheng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.06.005 Cite this Article
    HUANG Wen-Chao, WANG Xiao-Fang, CHEN Xiao-Shuang, XUE Yu-Xiong, YANG Sheng-Sheng. 2D-carrier profiling in narrow quantum wells by a Schottky’s current transport model based on scanning spreading resistance microscopy[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 668 Copy Citation Text show less
    References

    [1] Xia H, Lu Z Y, Li T X, et al. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping[J]. Acs Nano, 2012, 6(7):6005-6013.

    [2] Nakamura S, Senoh M, Iwasa N, et al. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes[J]. Appl. Phys. Lett., 1995, 67(13):1868-1870.

    [3] Choquette K D, Klem J F, Fischer A J, et al. Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm[J]. Electron. Lett., 2000, 36(16):1388-1390.

    [4] Nakada N, Nakaji M, Ishikawa H, et al. Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire[J]. Appl. Phys. Lett., 2000, 76(14):1804-1806.

    [5] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264:553-556.

    [6] Williams B S, Callebaut H, Kumar S, et al. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation[J]. Appl. Phys. Lett., 2003, 82(7):1015-1017.

    [7] Shafai C, Thomson D J, Normandin M S, et al. Delineation of semiconductor doping by scanning resistance microscopy[J]. Appl. Phys. Lett., 1994, 64(3):342-344.

    [8] Lu R P, Kavanagh K L, Dixon-Warren St J, et al. Calibrated scanning spreading resistance microscopy profiling of carriers in III-V structures[J]. J. Vac. Sci. Technol. B, 2001, 19(4):1662-1670.

    [9] Lu R P, Kavanagh K L, Dixon-Warren St J, et al. Scanning spreading resistance microscopy current transport studies on doped III–V semiconductors [J]. J. Vac. Sci. Technol. B, 2002, 20(4):1682-1689.

    [10] Hudait M K, Krupanidhi S B. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures[J]. Physica B, 2001, 307(1):125-137.

    [11] Sze S M. Physics of semiconductor devices[M]. Second Edition, SuZhou, Suzhou University Press, 2003, 543.

    [12] Lin Y J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-Ga N from current-voltage measurements[J]. Appl. Phys. Lett., 2005, 86(12):1417.

    [13] Roul B, Rajpalke M K, Bhat T N, et al. Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films[J]. Appl. Phys. Lett., 2011, 99(16):760.

    [14] Kenney C, Saraswat K C, Taylor B, et al.Thermionic Field Emission Explanation for Nonlinear Richardson Plots[J]. IEEE Transactions on Electron Devices, 2011, 58(8):2423-2429.

    [15] Cheung S K, Cheung N W. Schottky barrier degradation of the W/GaAs system after high‐temperature annealing[J]. J. Appl. Phys., 1986, 60(9):3235-3242.

    [16] Suvorova N A, Shchularev A V, Usov I O, et al. XPS study of dependence of Au/6H-SiC Schottky barrier height on carrier concentration[J]. Semiconducting and Insulating Materials, Proceedings of the 10 th Conference, 1998, 291-294.

    [17] Pan S H, Shen H, Hang Z, et al. Photoreflectance study of narrow-well strained-layer InGaAs/GaAs coupled multiple-quantum-well structures[J]. Phys. Rev. B, 1988, 38:3375.

    [18] Liu J, Mandal K C, Koley G. Investigation of nanoscale electronic properties of CdZnTe crystals by scanning spreading resistance microscopy[J]. Semicond. Sci. Technol., 2009, 24(4):045012.

    [19] Padovani F A, Stratton R. Field and thermionic-field emission in Schottky barriers[J]. Solid-State Electron, 1966, 9(7):695-707.

    [20] Hudait M K, Krupanidhi S B. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures[J]. Physica B, 2001, 307(1):125-137.

    [21] Pipinys P, Lapeika V. Analysis of reverse-Bias leakage current mechanisms in metal/GaN Schottky diodes[J]. Advances in Condensed Matter Physics, 2010, 2010(1687-8108):211-232.

    [22] Crofton J, Sriram S. Reverse leakage current calculations for SiC Schottky contacts[J]. IEEE Transactions on Electron Devices, 1966, 43(12):2305-2307.

    [23] Stratton R. Theory of field emission from semiconductors[J]. Phys. Rev., 1932, 125(1):67-82.

    [24] Stratton R. Volt-current characteristics for tunneling through insulating films[J]. J. Phys. Chem. Solids, 1962, 23(9):1177-1190.

    [25] Suman D, Shen S, Kenneth P R, et al. Simulation and design of InAlAs/InGaAs pnp heterojunction bipolar transistors[J]. IEEE Transactions on Electron Devices, 1998,45(8):1634-1643.

    [26] Tan S O, Tecimer H U, iek O, et al. Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities[J]. J. Mater. Sci-Mater. El., 2016, 27(8):1-8.

    [27] Sze S M, Crowell C R, Kahng D. Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers[J]. J. Appl. Phys., 1964, 35(8):2534-2536.

    HUANG Wen-Chao, WANG Xiao-Fang, CHEN Xiao-Shuang, XUE Yu-Xiong, YANG Sheng-Sheng. 2D-carrier profiling in narrow quantum wells by a Schottky’s current transport model based on scanning spreading resistance microscopy[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 668
    Download Citation