• Photonics Research
  • Vol. 10, Issue 12, 2828 (2022)
Hui Guo1、2, Na Liu1、2, Zhi Li1、2, Rongguo Yang1、2, Hengxin Sun1、2, Kui Liu1、2、3、*, and Jiangrui Gao1、2、4、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3e-mail:
  • 4e-mail:
  • show less
    DOI: 10.1364/PRJ.469340 Cite this Article Set citation alerts
    Hui Guo, Na Liu, Zhi Li, Rongguo Yang, Hengxin Sun, Kui Liu, Jiangrui Gao. Generation of continuous-variable high-dimensional entanglement with three degrees of freedom and multiplexing quantum dense coding[J]. Photonics Research, 2022, 10(12): 2828 Copy Citation Text show less
    References

    [1] D. Cozzolino, B. Da Lio, D. Bacco, L. K. Oxenløwe. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol., 2, 1900038(2019).

    [2] M. Erhard, M. Krenn, A. Zeilinger. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys., 2, 365-381(2020).

    [3] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, P. Wallden. Advances in quantum cryptography. Adv. Opt. Photon., 12, 1012-1236(2020).

    [4] M. Doda, M. Huber, G. Murta, M. Pivoluska, M. Plesch, C. Vlachou. Quantum key distribution overcoming extreme noise: Simultaneous subspace coding using high-dimensional entanglement. Phys. Rev. Appl., 15, 034003(2021).

    [5] X.-L. Wang, X.-D. Cai, Z.-E. Su, M.-C. Chen, D. Wu, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516-519(2015).

    [6] X.-M. Hu, C. Zhang, B.-H. Liu, Y. Cai, X.-J. Ye, Y. Guo, W.-B. Xing, C.-X. Huang, Y.-F. Huang, C.-F. Li, G.-C. Guo. Experimental high-dimensional quantum teleportation. Phys. Rev. Lett., 125, 230501(2020).

    [7] S. Slussarenko, G. J. Pryde. Photonic quantum information processing: a concise review. Appl. Phys. Rev., 6, 041303(2019).

    [8] C. Fabre, N. Treps. Modes and states in quantum optics. Rev. Mod. Phys., 92, 035005(2020).

    [9] W. Wang, K. Zhang, J. Jing. Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 125, 140501(2020).

    [10] O. Kovalenko, Y.-S. Ra, Y. Cai, V. C. Usenko, C. Fabre, N. Treps, R. Filip. Frequency-multiplexed entanglement for continuous-variable quantum key distribution. Photon. Res., 9, 2351-2359(2021).

    [11] M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, O. Pfister. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett., 107, 030505(2011).

    [12] J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, N. Treps. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 8, 109-112(2014).

    [13] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, A. Furusawa. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 7, 982-986(2013).

    [14] S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps, P. K. Lam, H. A. Bachor. Programmable multimode quantum networks. Nat. Commun., 3, 1026(2012).

    [15] S. Shi, L. Tian, Y. Wang, Y. Zheng, C. Xie, K. Peng. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 125, 070502(2020).

    [16] Y. Chen, S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed quantum dense coding. Phys. Rev. Lett., 127, 093601(2021).

    [17] K. Liu, J. Guo, C. Cai, S. Guo, J. Gao. Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator. Phys. Rev. Lett., 113, 170501(2014).

    [18] L. La Volpe, S. De, M. I. Kolobov, V. Parigi, C. Fabre, N. Treps, D. B. Horoshko. Spatiotemporal entanglement in a noncollinear optical parametric amplifier. Phys. Rev. Appl., 15, 024016(2021).

    [19] T. M. Graham, H. J. Bernstein, T.-C. Wei, M. Junge, P. G. Kwiat. Superdense teleportation using hyperentangled photons. Nat. Commun., 6, 7185(2015).

    [20] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 120, 260502(2018).

    [21] A. Forbes, I. Nape. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci., 1, 011701(2019).

    [22] C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. R. Cortes, Y.-B. Zhang, B. Fischer, S. Loranger, R. Kashyap, A. Cino, S.-T. Chu, B. E. Little, D. J. Moss, L. Caspani, W. J. Munro, J. Azana, M. Kues, R. Morandotti. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys., 15, 148-153(2019).

    [23] T. Baumgratz, A. Datta. Quantum enhanced estimation of a multidimensional field. Phys. Rev. Lett., 116, 030801(2016).

    [24] S. Mukamel, M. Freyberger, W. Schleich, M. Bellini, A. Zavatta, G. Leuchs, C. Silberhorn, R. W. Boyd, L. L. Sanchez-Soto, A. Stefanov, M. Barbieri, A. Paterova, L. Krivitsky, S. Shwartz, K. Tamasaku, K. Dorfman, F. Schlawin, V. Sandoghdar, M. Raymer, A. Marcus, O. Varnavski, T. Goodson, Z.-Y. Zhou, B.-S. Shi, S. Asban, M. Scully, G. Agarwal, T. Peng, A. V. Sokolov, Z.-D. Zhang, M. S. Zubairy, I. A. Vartanyants, E. del Valle, F. Laussy. Roadmap on quantum light spectroscopy. J. Phys. B, 53, 072002(2020).

    [25] D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Loncar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vuckovic, E. Waks, R. Walsworth, A. M. Weiner, Z.-S. Zhang. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum, 2, 017002(2021).

    [26] R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, A. Zeilinger. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun., 5, 4502(2014).

    [27] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S. L. Braunstein. Advances in quantum teleportation. Nat. Photonics, 9, 641-652(2015).

    [28] S. Takeda, T. Mizuta, M. Fuwa, P. van Loock, A. Furusawa. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 500, 315-318(2013).

    [29] G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, C. Fabre. Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions. Eur. Phys. J. D, 66, 241(2012).

    [30] M. Chen, N. C. Menicucci, O. Pfister. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett., 112, 120505(2014).

    [31] Y. Cai, J. Roslund, G. Ferrini, F. Arzani, X. Xu, C. Fabre, N. Treps. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun., 8, 15645(2017).

    [32] J. Janousek, K. Wagner, J.-F. Morizur, N. Treps, P. K. Lam, C. C. Harb, H. A. Bachor. Optical entanglement of co-propagating modes. Nat. Photonics, 3, 399-402(2009).

    [33] K. Liu, J. Guo, C. Cai, J. Zhang, J. Gao. Direct generation of spatial quadripartite continuous variable entanglement in an optical parametric oscillator. Opt. Lett., 41, 5178-5181(2016).

    [34] C.-X. Cai, L. Ma, J. Li, H. Guo, K. Liu, H.-X. Sun, R.-G. Yang, J.-R. Gao. Generation of a continuous-variable quadripartite cluster state multiplexed in the spatial domain. Photon. Res., 6, 479-484(2018).

    [35] M. Lassen, G. Leuchs, U. L. Andersen. Continuous variable entanglement and squeezing of orbital angular momentum states. Phys. Rev. Lett., 102, 163602(2009).

    [36] R. F. Barros, G. B. Alves, O. Pfister, A. Z. Khoury. Quantum-controlled cluster states. Phys. Rev. A, 104, 033713(2021).

    [37] V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, F. Sciarrino. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun., 3, 961(2012).

    [38] T. S. Iskhakov, M. V. Chekhova, G. O. Rytikov, G. Leuchs. Macroscopic pure state of light free of polarization noise. Phys. Rev. Lett., 106, 113602(2011).

    [39] L.-M. Duan, G. Giedke, J. I. Cirac, P. Zoller. Inseparability criterion for continuous variable systems. Phys. Rev. Lett., 84, 2722-2725(2000).

    [40] R. Simon. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett., 84, 2726-2729(2000).

    [41] P. Wang, W. Fan, M. Chen, O. Pfister. Engineering large-scale entanglement in the quantum optical frequency comb. CLEO, FTh1A.5(2015).

    [42] M. T. L. Hsu, W. P. Bowen, P. K. Lam. Spatial-state Stokes-operator squeezing and entanglement for optical beams. Phys. Rev. A, 79, 043825(2009).

    [43] W. P. Bowen, N. Treps, R. Schnabel, P. K. Lam. Experimental demonstration of continuous variable polarization entanglement. Phys. Rev. Lett., 89, 253601(2002).

    [44] Y. Guo, B.-H. Liu, C.-F. Li, G.-C. Guo. Advances in quantum dense coding. Adv. Quantum Technol., 2, 1900011(2019).

    [45] S. L. Braunstein, H. J. Kimble. Dense coding for continuous variables. Phys. Rev. A, 61, 042302(2000).

    [46] T. C. Ralph, E. H. Huntington. Unconditional continuous-variable dense coding. Phys. Rev. A, 65, 034003(2002).

    [47] X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, K. Peng. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett., 88, 047904(2002).

    [48] J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, K. Peng. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 90, 167903(2003).

    [49] J. Mizuno, K. Wakui, A. Furusawa, M. Sasaki. Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A, 71, 012304(2005).

    [50] B. Hage, A. Amblowski, R. Schnabel. Towards Einstein-Podolsky-Rosen quantum channel multiplexing. Phys. Rev. A, 81, 062301(2010).

    [51] M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, E. H. Huntington. Multiplexed communication over a high-speed quantum channel. Phys. Rev. A, 81, 032325(2010).

    [52] E. H. Huntington, G. N. Milford, C. Robilliard, T. C. Ralph, O. Glockl, U. L. Andersen, S. Lorenz, G. Leuchs. Demonstration of the spatial separation of the entangled quantum sidebands of an optical field. Phys. Rev. A, 71, 041802(2005).

    Hui Guo, Na Liu, Zhi Li, Rongguo Yang, Hengxin Sun, Kui Liu, Jiangrui Gao. Generation of continuous-variable high-dimensional entanglement with three degrees of freedom and multiplexing quantum dense coding[J]. Photonics Research, 2022, 10(12): 2828
    Download Citation