• Photonics Research
  • Vol. 6, Issue 9, 925 (2018)
Ting-Hui Xiao1、†, Ziqiang Zhao2、†, Wen Zhou3、†, Mitsuru Takenaka2, Hon Ki Tsang3, Zhenzhou Cheng1、*, and Keisuke Goda1、4、5
Author Affiliations
  • 1Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
  • 2Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-0033, Japan
  • 3Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
  • 4Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
  • 5e-mail: goda@chem.s.u-tokyo.ac.jp
  • show less
    DOI: 10.1364/PRJ.6.000925 Cite this Article Set citation alerts
    Ting-Hui Xiao, Ziqiang Zhao, Wen Zhou, Mitsuru Takenaka, Hon Ki Tsang, Zhenzhou Cheng, Keisuke Goda. High-Q germanium optical nanocavity[J]. Photonics Research, 2018, 6(9): 925 Copy Citation Text show less
    References

    [1] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495-497(2010).

    [2] N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, S. Ashihara. Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing. J. Appl. Phys., 120, 173103(2016).

    [3] Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, F. N. Xia. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett., 16, 4648-4655(2016).

    [4] H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, J. J. Hu. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Opt. Lett., 38, 1470-1472(2013).

    [5] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [6] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picque. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 6, 6310(2015).

    [7] Y. Zou, S. Chakravarty, C. J. Chung, X. C. Xu, R. T. Chen. Mid-infrared silicon photonic waveguides and devices [Invited]. Photon. Res., 6, 254-276(2018).

    [8] T. Hu, B. W. Dong, X. S. Luo, T. Y. Liow, J. F. Song, C. Lee, G. Q. Lo. Silicon photonic platforms for mid-infrared applications [Invited]. Photon. Res., 5, 417-430(2017).

    [9] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [10] F. X. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, D. J. Moss. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt. Express, 19, 15212-15220(2011).

    [11] C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, M. G. Allen. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. Opt. Express, 23, 5491-5499(2015).

    [12] J. Chiles, S. Fathpour. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 1, 350-355(2014).

    [13] S. Khan, J. Chiles, J. Ma, S. Fathpour. Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics. Appl. Phys. Lett., 102, 121104(2013).

    [14] S. A. Miller, M. J. Yu, X. C. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, M. Lipson. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707-712(2017).

    [15] R. Shankar, R. Leijssen, I. Bulu, M. Loncar. Mid-infrared photonic crystal cavities in silicon. Opt. Express, 19, 5579-5586(2011).

    [16] R. Shankar, I. Bulu, R. Leijssen, M. Loncar. Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities. Opt. Express, 19, 24828-24837(2011).

    [17] H. T. Lin, Z. Q. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, J. J. Hu. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2018).

    [18] N. K. Hon, R. Soref, B. Jalali. The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared. J. Appl. Phys., 110, 011301(2011).

    [19] A. Malik, S. Dwivedi, L. Van Landschoot, M. Munceb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, G. Roelkens. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt. Express, 22, 28479-28488(2014).

    [20] S. Radosavljevic, N. T. Beneitez, A. Katumba, M. Muneeb, M. Vanslembrouck, B. Kuyken, G. Roelkens. Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited]. Opt. Mater. Express, 8, 824-835(2018).

    [21] W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, C. S. Tan. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. Appl. Phys. Lett., 109, 241101(2016).

    [22] J. Kang, X. Yu, M. Takenaka, S. Takagi. Impact of thermal annealing on Ge-on-insulator substrate fabricated by wafer bonding. Mater. Sci. Semicond. Process., 42, 259-263(2016).

    [23] K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, C. S. Tan. Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys., 116, 103506(2014).

    [24] T. H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, K. Goda. Mid-infrared germanium photonic crystal cavity. Opt. Lett., 42, 2882-2885(2017).

    [25] J. Kang, Z. Cheng, W. Zhou, T. H. Xiao, K. L. Gopalakrisna, M. Takenaka, H. K. Tsang, K. Goda. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Opt. Lett., 42, 2094-2097(2017).

    [26] M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, C. Grillet. Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon–germanium waveguides. Optica, 5, 360-366(2018).

    [27] L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, A. C. Peacock. Two-photon absorption and all-optical modulation in germanium-on-silicon waveguides for the mid-infrared. Opt. Lett., 40, 2213-2216(2015).

    [28] B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, G. Z. Mashanovich. Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared. Opt. Lett., 41, 610-613(2016).

    Ting-Hui Xiao, Ziqiang Zhao, Wen Zhou, Mitsuru Takenaka, Hon Ki Tsang, Zhenzhou Cheng, Keisuke Goda. High-Q germanium optical nanocavity[J]. Photonics Research, 2018, 6(9): 925
    Download Citation