[1] W Shao, Q Yang, C Zhang, et al. Planar dual-cavity hot-electron photodetectors. Nanoscale, 11, 1396-1402(2019).
[2] M W Knight, H Sobhani, P Nordlander, et al. Photodetection with active optical antennas. Science, 332, 702-704(2011).
[3] L Wang, S J He, K Y Wang, et al. Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector. Nanotechnology, 29, 505203(2018).
[4] Z Yang, K Du, H Wang, et al. Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure. Nanotechnology, 30, 075204(2019).
[5] Kaifang Qiu, Aiping Zhai, Wenyan Wang, et al. Research progress on surface plasmon hot-carrier photodetectors. Semiconductor Technology, 45, 169-178(2020).
[6] Weidi He, Dan Su, Shanjiang Wang, et al. Progress of surface plasmon nanostructure enhanced photodetector (Invited). Infrared and Laser Engineering, 50, 20211014(2021).
[7] R N Sun, K Q Peng, B Hu, et al. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications. Applied Physics Letters, 107, 013107(2015).
[8] B H Wu, W T Liu, T Y Chen, et al. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano Energy, 27, 412-419(2016).
[9] Xianyong Yan, Aiping Zhai, Linlin Shi, et al. Research progress on solar water splitting based on hot carrier effect of surface plasmon polaritons. Semiconductor Technology, 46, 581-590, 616(2021).
[10] S Ishii, S L Shinde, T Nagao. Nonmetallic materials for plasmonic hot carrier excitation. Advanced Optical Materials, 7, 00603(2018).
[11] Y J Jang, K Chung, J S Lee, et al. Plasmonic hot carriers imaging: promise and outlook. ACS Phontonics, 5, 4711-4723(2018).
[12] Y-L Ho, Y-H Tai, J K Clark, et al. Plasmonic hot-carriers in channel-coupled nanogap structure for metal–semiconductor barrier modulation and spectral-selective plasmonic monitoring. ACS Photonics, 5, 2617-2623(2018).
[13] W Li, J G Valentine. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics, 6, 177-191(2017).
[14] A V Zayats, S Maier. Hot-electron effects in plasmonics and plasmonic materials. Advanced Optical Materials, 5, 1700508(2017).
[15] A Kösemen, Kösemen Z Alpaslan, B Canimkubey, et al. Fe doped TiO2 thin film as electron selective layer for inverted solar cells. Solar Energy, 132, 511-517(2016).
[16] Qilong Wang, Yupei Li, Yusheng Zhai, et al. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction. Infrared and Laser Engineering, 48, 0203002(2019).
[17] C Zhang, Q Qian, L Qin, et al. Broadband light harvesting for highly efficient hot-electron application based on conformal metallic nanorod arrays. ACS Photonics, 5, 5079-5085(2018).
[18] M Tanzid, A Ahmadivand, R Zhang, et al. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photonics, 5, 3472-3477(2018).
[19] S M A Mirzaee, O Lebel, J M Nunzi. Simple unbiased hot-electron polarization-sensitive near-infrared photodetector. ACS Appl Mater Interfaces, 10, 11862-11871(2018).
[20] X Luo, F Zhao, Y Liang, et al. Facile nanogold-perovskite enabling ultrasensitive flexible broadband photodetector with pW scale detection limit. Advanced Optical Materials, 6, 1800996(2018).
[21] Linhua Gao, Yanxia Cui, Qiangbing Liang, et al. Research progress in metal-inorganic semiconductor-metal photodetectors. Infrared and Laser Engineering, 49, 20201025(2020).
[22] K Wu, Y Zhan, S Wu, et al. Surface-plasmon enhanced photodetection at communication band based on hot electrons. Journal of Applied Physics, 118, 063101(2015).
[23] Z Fang, Z Liu, Y Wang, et al. Graphene-antenna sandwich photodetector. Nano Letters, 12, 3808-3813(2012).
[24] C Zhang, K Wu, B Ling, et al. Conformal TCO-semiconductor-metal nanowire array for narrowband and polarization-insensitive hot-electron photodetection application. Journal of Photonics for Energy, 6, 042502(2016).
[25] A I Nusir, G P Abbey, A M Hill, et al. Hot electrons in microscale thin-film Schottky barriers for enhancing near-infrared detection. IEEE Photonics Technology Letters, 28, 2241-2244(2016).
[26] M A Nazirzadeh, F B Atar, B B Turgut, et al. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection. Sci Rep, 4, 7103(2014).
[27] Z Qi, Y Zhai, L Wen, et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. Nanotechnology, 28, 275202(2017).
[28] L V Besteiro, X T Kong, Z Wang, et al. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photonics, 4, 2759-2781(2017).
[29] D C Ratchford, A D Dunkelberger, I Vurgaftman, et al. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett, 17, 6047-6055(2017).
[30] L Gundlach, R Ernstorfer, F Willig. Escape dynamics of photoexcited electrons at catechol: TiO2(110). Physical Review B, 74, 035324(2006).
[31] D Tobaldi, C Piccirillo, N Rozman, et al. Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO2 nano-heterostructures. Journal of Photochemistry Photobiology A: Chemistry, 330, 44-54(2016).
[32] H Shinotsuka, S Tanuma, C J Powell, et al. Calculations of electron inelastic mean free paths. X. data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm. Surface and Interface Analysis, 47, 871-888(2015).
[33] Y Fang, Y Jiao, K Xiong, et al. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures. Nano Letters, 15, 4059(2015).
[34] F X Liang, J Z Wang, Y Wang, et al. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection. Applied Surface Science, 426, 391-398(2017).
[35] G V Hartland, L V Besteiro, P Johns, et al. What’s so hot about electrons in metal nanoparticles?. ACS Energy Letters, 2, 1641-1653(2017).
[36] H Zhang, A O Govorov. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 118, 7606-7614(2014).
[37] M J S Moskovits. Hot electrons cross boundaries. Science, 332, 676-677(2011).
[38] Y Shiraishi, N Yasumoto, J Imai, et al. Quantum tunneling injection of hot electrons in Au/TiO2 plasmonic photocatalysts. Nanoscale, 9, 8349-8361(2017).
[39] Y Li, Y Guo, Y Li, et al. Fabrication of Cd-doped TiO2 nanorod arrays and photovoltaic property in perovskite solar cell. Electrochimica Acta, 200, 29-36(2016).