• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 1, 1750011 (2018)
Zhifang Li1, Haiyu Chen2, Feifan Zhou3, Hui Li1、*, and Wei R. Chen1、3
Author Affiliations
  • 1College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian 350007, P. R. China
  • 2Department of Cardiovascular Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350000, P. R. China
  • 3Biophotonics Research Laboratory Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
  • show less
    DOI: 10.1142/s1793545817500110 Cite this Article
    Zhifang Li, Haiyu Chen, Feifan Zhou, Hui Li, Wei R. Chen. Interstitial photoacoustic technique and computational simulation for temperature distribution and tissue optical properties in interstitial laser photothermal interaction[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1750011 Copy Citation Text show less
    References

    [1] W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: An in vivo e±cacy study," Cancer Lett. 98, 169-173 (1996).

    [2] W. R. Chen, W.-G. Zhu, J. R. Dynlacht, H. Liu, R. E. Nordquist, “Long-term tumor resistance induced by laser photo-immunotherapy," Int. J. Cancer 81, 808-812 (1999).

    [3] W. R. Chen, H. Liu, J. A. Nordquist, R. E. Nordquist, “Tumor cell damage and leukocyte infiltration after laser immunotherapy treatment," Lasers Med. Sci. 15, 43-48 (2000).

    [4] W. R. Chen, A. K. Singhal, H. Liu, R. E. Nordquist, “Antitumor immunity induced by laser immunotherapy and its adoptive transfer," Cancer Res. 61, 459-461 (2001).

    [5] W. R. Chen, J. W. Ritchey, K. E. Bartels, H. Liu, R. E. Nordquist, “Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats," Cancer Res. 62, 4295-4299 (2002).

    [6] W. R. Chen, S. W. Jeong, M. D. Lucroy, R. F. Wolf, E. W. Howard, H. Liu, R. E. Nordquist, “Induced anti-tumor immunity against DMBA-4 metastatic mammary tumors in rats using laser immunotherapy," Int. J. Cancer 107, 1053-1057 (2003).

    [7] X. Li, G. L. Ferrel, M. C. Guerra, T. Hode, J. A. Lunn, O. Adalsteinsson, R. E. Nordquist, H. Liu, W. R. Chen, “Preliminary safety and e±cacy results of laser immunotherapy for the treatment of metastatic breast cancer patients," Photochem. Photobiol. Sci. 10, 817-821 (2011).

    [8] X. Li, M. F. Naylor, R. E. Nordquist, T. K. Teague, C. A. Howard, C. Murray, W. R. Chen, “In Situ Photoimmunotherapy for Late-stage Melanoma Patients: A Preliminary Study," Cancer Biol. Ther. 10(11), 1077-1214 (2010).

    [9] M. N. Iizuka, I. A. Vitkin, M. C. Kolios, M. D. Sherar, “The effect of dynamic optical properties during interstitial laser photocoagulation," Phys. Med. Biol. 45, 1335-1357 (2000).

    [10] Y. Mohammed, J. F. Verhey, “A finite element method model to simulate laser interstitial thermotherapy in anatomical inhomogeneous regions," Biomed. Eng. Online 4, 2 (2005).

    [11] A. J. Welch, M. J. C. van Gemert (Eds.), Optical- Thermal Response of Laser-Irradiated Tissue, 1st edn. Plenum Publishing Corporation, New York (1995).

    [12] M. Mital, E. P. Scott, “Thermal detection of embedded tumors using infrared imaging," J. Biomech. Eng. 129(1), 33-39 (2007).

    [13] I. M. Gescheit, A. Dayan, M. Ben-David, I. Gannot, “Minimal-invasive thermal imaging of a malignant tumor: A simple model and algorithm," Med. Phys. 37(1), 211-216 (2010).

    [14] T. Varghese, J. A. Zagzebski, Q. Chen, U. Techavipoo, G. Frank, C. Johnson, A. Wright, F. T. Lee, “Ultrasound monitoring of temperature change during radofrequency ablation: Preliminary in vivo results." Ultrasound Med. Biol. 28(3), 321-329 (2002).

    [15] K. Le, X. Li, D. Figueroa, R. A. Towner, P. Garteiser, D. Saunders, N. Smith, H. Liu, T. Hode, R. E. Nordquist, W. R. Chen, “Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method," J. Biomed. Opt. 16(12), 128001 (2011).

    [16] Y. Chen, S. C.Gnyawali, F.Wu, H. Liu, Y. A. Tesiram, A. Abbott, R. A. Towner, W. R. Chen, “Magnetic resonance imaging guidance for laser photothermal therapy," J. Biomed. Opt. 13, 044033 (2008).

    [17] T. I. Oh, H. J. Kim, W. C. Jeong, M. Chauhan, O. I. Kwon, E. J. Woo, “Detection of temperature distribution via recovering electrical conductivity in MREIT," Phys. Med. Biol. 58(8), 2697-2711 (2013).

    [18] J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy," J. Biomed. Opt. 13, 034024 (2008).

    [19] H. Cui, X. Yang, “Real-time monitoring of highintensity focused ultrasound ablations with photoacoustic technique: An in vitro study," Med. Phys. 38(10), 5345-5350 (2011).

    [20] I. V. Larina, K. V. Larin, R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues," J. Phys. D, Appl. Phys. 38, 2633-2639 (2005).

    [21] M. Pramanik, L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature," J. Biomed. Opt. 14, 054024 (2009).

    [22] J. Yao, H. Ke, S. Tai, Y. Zhou, L. V. Wang, “Absolute photoacoustic thermometry in deep tissue," Opt. Lett. 38, 5228-5231 (2013).

    [23] Y. Hsiao, X. Wang, C. X. Deng, “Dual-wavelength photoacoustic technique for monitoring tissue status during thermal treatments," J. Biomed. Opt. 18(6), 067003 (2013).

    [24] M. S. Singh, H. Jiang, “Elastic property attributes to photoacoustic signals: An experimental phantom study," Opt. Lett. 39, 3970-3973 (2014).

    [25] Z. Li, H. Li, H. Chen, W. Xie, “In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer," J. Biomed. Opt. 16, 076011 (2011).

    [26] R. Molenaar, J. J. tenBosch, J. R.Zijp, “Determination of Kubelka-Munk Scattering and absorption coe±cients by diffuse illumination," Appl. Opt. 38, 2068-2077 (1999).

    [27] P. Shao, B. Cox, R. J. Zemp, “Estimating optical absorption, scattering and Grueneisen distributions with multiple-illumination," Appl. Opt. 50, 3145-3154 (2011).

    [28] B. Soroushian, W. M. Whelan, M. C. Kolios, “Dynamics of laser induced thermoelastic expansion of native and coagulated ex-vivo soft tissue samples and their optical and thermomechanical properties," Proc. SPIE 7899, 78990Z (2011).

    [29] A. Wang, R. Lu, L. Xie, “Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam," Appl. Opt. 55, 95-103 (2016).

    [30] W. Xie, Y. Liu, Z. Li, H. Li, “Reconstruction of 3D light distribution produced by cylindrical diffuser in deep tissues based on photoacoustic imaging," Chin. Opt. Lett. 12, 051702 (2014).

    [31] H. G. Zhang, K. Mehta, P. Cohen, C. Guha, “Hyperthermia on immune regulation: A temperature's story," Cancer Lett. 271, 191-204 (2008).

    [32] Z. Li, H. Chen, F. Zhou, H. Li, W. Chen, “Interstitial photoacoustic sensor for the measurement of tissue temperature during interstitial laser phototherapy," Sensors 15, 5583-5593 (2015).

    [33] J. K. Barton, G. Frangineas, H. Pummer, J. F. Black, “Cooperative phenomena in two-pulse, twocolor laser photocoagulation of cutaneous blood vessel," Photochem. Photobiol. 73, 642-650 (2001).

    [34] L. Cordone, A. Cupane, M. Leone, E. Vitrano, “Optical absorption spectra of deoxyhemoglobin and oxyhemoglobins in the temperature range 300-20 K relation with protein dynamics," Biophys. Chem. 24, 259-275 (1986).

    [35] W. A. Eaton, J. Hofrichter, “Polarized absorption and linear dichroism spectroscopy of hemoglobin," Methods Enzymol. 76, 175-261 (1981).

    [36] W. A. Eaton, L. K. Hanson, P. J. Stephens, J. C. Sutherland, J. B. R. Dunn, “Optical spectra of oxyand deoxyhemoglobin, J. Am. Chem. Sot. 100, 4991-5003 (1978).

    Zhifang Li, Haiyu Chen, Feifan Zhou, Hui Li, Wei R. Chen. Interstitial photoacoustic technique and computational simulation for temperature distribution and tissue optical properties in interstitial laser photothermal interaction[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1750011
    Download Citation