• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 2, 148 (2021)
Min XU, Qiaorui GONG, Shanming LI, and Yin HANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.02.002 Cite this Article
    XU Min, GONG Qiaorui, LI Shanming, HANG Yin. Research progress of titanium doped sapphire laser crystal[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 148 Copy Citation Text show less
    References

    [1] Wang J Y, Wu Y C. Progress of the research on photoelectronic functional crystals[J]. Materials China, 2010, 29(10): 1-15.

    [2] Wang J Y, Yu H H, Wu Y C, et al. Advanced materials and materials genome-review recent developments in functional crystals in China[J]. Engineering, 2015, 1(2): 192-210.

    [3] Lincoln Laboratory. Solid state research report[R]. MIT, 1982.

    [4] Moulton P. Titanium-doped sapphire: Tunable solid-sate laser[J]. Optics News, 1982, 8(6): 9.

    [5] Aggarwal R L, Sanchez A, Fahey R E, et al. Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: Concentration and absorption cross section of Ti3+ ions[J]. Applied Physics Letters, 1986, 48(20): 1345-1347.

    [6] Sanchez A, Strauss A J, Aggarwal R L, et al. Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 995-1002.

    [7] Han X Z, Feng X Q, Li W F, et al. One kind of new Ti3+ luminous center in Ti:Al2O3 crystals[J]. Optical Materials, 2020, 105: 109881.

    [8] Xu M, Si J L, Zhang X C, et al. Study on thermal properties of titanium-doped sapphire crystal[J]. Journal of Synthetic Crystal, 2014, 43(5): 1043-1049.

    [9] Rapoport W R, Khattak C P. Titanium sapphire laser characteristics[J]. Applied Optics, 1988, 27(13): 2677-2684.

    [10] Xu M, Si J L, Zhang X C, et al. Study on growth of large-sized Ti:Al2O3 crystals by the temperature gradient technique[J]. Journal of Synthetic Crystal, 2014, 43(1): 2781-2786.

    [11] Lacovara P, Esterowitz L, Kokta M. Growth, spectroscopy, and lasing of titanium-doped sapphire[J]. IEEE Journal of Quantum Electronics, 1985, QE-21(10): 1614-1618.

    [12] Fukuda T, Okano Y, Kodama N, et al. Growth of bubble-free Ti-doped Al2O3 single crystal by the Czochralski method[J]. Crystal Research & Technology, 1995, 30(2): 185-188.

    [13] Alombert-Goget G, Li H, Faria J, et al. Titanium distribution in Ti-sapphire single crystals grown by Czochralski and Verneuil technique[J]. Optical Materials, 2016, 51: 1-4.

    [14] Yin S T, Wu L S. Study on the growth of high quality long sized titanium doped sapphire (Ti:Al2O3) crystal and practical lamp pump Ti:Al2O3 laser[J]. Materials Reports, 2001, 15(2): 46-47.

    [15] Roth P W, Burns D, Kemp A J. Power scaling of a directly diode-laser-pumped Ti:sapphire laser[J]. Optics Express, 2012, 20(18): 20629-20634.

    [16] Gürel K, Wittwer V J, Hoffmann M, et al. Green-diode-pumped femtosecond Ti:sapphire laser with up to 450 mW average power[J]. Optics Express, 2015, 23(23): 30043-30048.

    [17] Li R X, Chen Y, Leng Y X, et al. Frontiers in ultrafast optics and ultra-intense laser technology[J]. Scientia Sinica Informationis, 2016, 46(9): 1236-1254.

    [18] Joyce D B, Schmid F. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers[J]. Journal of Crystal Growth, 2010, 312: 1138-1141.

    [19] Ning K J, Liu Y C, Ma J, et al. Growth and characterization of large-scale Ti:sapphire crystal using heat exchange method for ultra-fast ultra-high-power lasers[J]. CrystEngComm, 2015, 17: 2801-2805.

    [20] Cao H, Gan Z B, Liang X Y, et al. Optical property measurements of 235 mm large-scale Ti:sapphire crystal[J]. Chinese Optics Letters, 2018, 16(7): 071401.

    [21] Hang Y, Xu M, Zhang L H, et al. Domestic large sized Ti:sapphire crystal assists the world’s strongest pulsed laser amplification output[J]. Journal of Synthetic Crystal, 2019, 48(5): 809-811.

    [22] Nehari A, Brenier A, Panzer G, et al. Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations[J]. Crystal Growth & Design, 2011, 11(2): 445-448.

    [23] Alombert-Goget G, Sen G, Pezzani C, et al. Large Ti-doped sapphire single crystals grown by the Kyropoulos technique for petawatt power laser application[J]. Optical Materials, 2016, 61: 21-24.

    [24] Cui F Z, Zhou Y Z, Qiao J W, et al. Growth of high quality sapphire crystal by temperature gradient technique[J]. Journal of the Chinese Ceramic Society, 1980, 8(2): 109-113.

    [25] Zhang Q, Hu B, Deng P Z. Investigation of dislocation in sapphire and Ti3+-doped sapphire single crystals[J]. Journal of Synthetic Crystal, 1991, Z1: 367.

    [26] Liu J H, Deng P Z, Gan F X. Concentration effect on fluorescent characteristics of Ti:Al2O3 crystal[J]. Optical Materials, 1995, 4(6): 781-785.

    [27] Dong J, Deng P Z. Ti:sapphire crystal used in ultrafast lasers and amplifiers[J]. Journal of Crystal Growth, 2004, 261: 514-519.

    [28] Peshev P, Delineshev S, Petrov V, et al. Bridgman-stockbarger growth and spectral characteristics of Al2O3:Ti3+ single crystals[J]. Crystal Research & Technology, 1988, 23(5): 641-645.

    [29] Nizhankovskiy S V, Dan’ko A Y, Krivonosov E V, et al. Growth of large Ti:sapphire crystals by horizontal directional solidification in argon atmosphere[J]. Inorganic Materials, 2010, 46(1): 35-37.

    [30] Xu H, Jiang Y J, Fan X J, et al. Growth and characterization of Fe:Ti:Al2O3 single crystal by floating zone method[J]. Journal of Crystal Growth, 2013, 372: 82-86.

    [31] Moulton P F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the Optical Society of America B, 1986, 3(1): 125-133.

    [32] Pinto J F, Esterowitz L, Rosenblatt G H, et al. Improved Ti:sapphire laser performance with new high figure of merit crystals[J]. IEEE Journal of Quantum Electronics, 1994, 30(11): 2612-2616.

    [33] Fahey R E, Strauss A J, Sanchez A, et al. Tunable Solid State Lasers II[M]. New York: Springer, 1987: 82-88.

    [34] Aggarwal R L, Sanchez A, Stuppi M M, et al. Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 1003-1008.

    [35] Yin S T, Chen W, Feng L, et al. Research on the broadly residual absorption of titanium doped sapphire[J]. Journal of Synthetic Crystal, 1997, 26(3): 246.

    [36] Zeng G P, Yin S T. Relation between residual infrared absorption and dislocations in Ti3+: α-Al2O3 single crystal[J]. Journal of Synthetic Crystal, 2000, 29(s1): 203.

    [37] Zeng G P, Yin S T, Yu X L. The relation between infrared residual absorption and point defects in Ti3+: α-Al2O3 single crystal[J]. Chinese Journal of Quantum Electronics, 2002, 19(1): 25-30.

    [38] Matsunaga K, Nakamura A, Yamamoto T, et al. Theoretical study of defect structures in pure and titanium-doped alumina[J]. Solid State Ionics, 2004, 172: 155-158.

    [39] Matsunaga K, Nakamura A, Yamamoto T, et al. First-principles study of defect energetics in titanium-doped alumina[J]. Physical Review B, 2003, 68: 214102.

    [40] Pustovarov V A, Perevalov T V, Gritsenko V A, et al. Oxygen vacancy in Al2O3: Photoluminescence study and first-principle simulation[J]. Thin Solid Films, 2011, 519(19): 6319-6322.

    [41] Matsunaga K, Tanaka T, Yamamoto T, et al. First-principles calculations of intrinsic defects in Al2O3[J]. Physical Review B, 2003, 68: 085110.

    [42] Matsunaga K, Mizoguchi T, Nakamura A, et al. Formation of titanium-solute clusters in alumina: A first-principles study[J]. Applied Physics Letters, 2004, 84(23): 4795-4797.

    [43] Kravchenko L Y, Fil D V. Defect complexes in Ti-doped sapphire: A first principles study[J]. Journal of Applied Physics, 2018, 123(2): 023104.

    [44] Moulton P F, Cederberg J G, Stevens K T, et al. Characterization of absorption bands in Ti:sapphire crystals[J]. Optical Materials Express, 2019, 9(5): 2216-2251.

    [45] Klein J, Kafka J D. The Ti:sapphire laser: The flexible research tool[J]. Nature Photonics, 2010, 4: 289-289.

    [46] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56: 219-221.

    [47] Perry M D, Pennington D, Stuart B C, et al. Petawatt laser pulses[J]. Optics Letters, 1999, 24(3): 160-162.

    [48] Aoyama M, Yamakawa K, Akahane Y, et al. 0.85 PW, 33 fs Ti:sapphire laser[J]. Optics Letters, 2003, 28(17): 1594-1596.

    [49] Chu Y X, Liang X Y, Yu L H, et al. High-contrast 2.0 petawatt Ti:sapphire laser system[J]. Optics Express, 2013, 21(24): 29231-29239.

    [50] Chu Y X, Gan Z B, Liang X Y, et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 2015, 40(21): 5011-5014.

    [51] Li W Q, Gan Z B, Yu L H, et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684.

    [52] Roth P W, Maclean A J, Burns D, et al. Directly diode-laser-pumped Ti:sapphire laser[J]. Optics Letters, 2009, 34(21): 3334-3336.

    [53] Roth P W, Burns D, Kemp A J. Power scaling of a directly diode-laser-pumped Ti:sapphire laser[J]. Optics Express, 2012, 20(18): 20629-20634.

    [54] Durfee C G, Storz T, Garlick J, et al. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser[J]. Optics Express, 2012, 20(13): 13677-13683.

    [55] Sawada R, Tanaka H, Sugiyama N, et al. Wavelength-multiplexed pumping with 478 and 520 nm indium gallium nitride laser diodes for Ti:sapphire laser[J]. Applied Optics, 2017, 56(6): 1654-1661.

    [56] Miao Z W, Yu H J, Zhang J Y, et al. Watt-level CW Ti:sapphire oscillator directly pumped with green laser diodes module[J]. IEEE Photonics Technology Letter, 2020, 32(5): 247-250.

    [57] Liu H, Wang G Y, Jiang J W, et al. Sub-10 fs pulse generation from a blue laser-diode pumped Ti:sapphire oscillator[J]. Chinese Optics Letters, 2020, 18(7): 071402.

    XU Min, GONG Qiaorui, LI Shanming, HANG Yin. Research progress of titanium doped sapphire laser crystal[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 148
    Download Citation